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Let H(t)=−D+V(t, x) be a time-dependent Schrödinger operator on L2(R3).
We assume that V(t, x) is 2p–periodic in time and decays sufficiently rapidly in
space. Let U(t, 0) be the associated propagator. For u0 belonging to the con-
tinuous spectral subspace of L2(R3) for the Floquet operator U(2p, 0), we study
the behavior of U(t, 0) u0 as t Q. in the topology of x-weighted spaces, in the
form of asymptotic expansions. Generically the leading term is t−3/2B1u0. Here
B1 is a finite rank operator mapping functions of x to functions of t and x,
periodic in t. If n ¥ Z is a threshold resonance of the corresponding Floquet
Hamiltonian −i“t+H(t), the leading behavior is t−1/2B0u0. The point spectral
subspace for U(2p, 0) is finite dimensional. If U(2p, 0) fj=e−i2pljfj, then
U(t, 0) fj represents a quasi-periodic solution.

KEY WORDS: Floquet Hamiltonian; asymptotic expansion; Floquet operator;
threshold resonances.

1. INTRODUCTION

The dynamics of quantum particles subject to external forces which depend
periodically on time is described by time-dependent Schrödinger equations
with potentials V(t, x) which are periodic in time:

i “tu=(−D+V(t, x)) u, (t, x) ¥ R×R3. (1.1)



Typical examples are the hydrogen atom placed in monocromatic electro-
magnetic fields or the light particle in the restricted three-body problem in
which two heavy particles are put in prescribed periodic orbits. We assume
that V(t, x) is 2p periodic in t and that |V(t, x)| Q 0 as |x| Q.. In this
paper we study the large time behavior of solutions of (1.1). We denote the
state space for (1.1) by H=L2(R3).

We begin with a brief review on the subject. We write U(t, s) for the
propagator for (1.1) so that the solution of (1.1) with the initial condition
u(s)=u0 is given by u(t)=U(t, s) u0. It is well known that, for studying
time periodic systems, the Floquet operators or the monodromy operators
defined by Us=U(s+2p, s), s ¥ T=R/2pZ, play the central role. The
Floquet operators are all unitarily equivalent and their spectral property is,
modulo multiplicities, equivalent to that of the Floquet Hamiltonian
defined by

K=−i“t −D+V(t, x)

on the extendede phase space

K=L2(T, L2(R3))=L2(T) é L2(R3)

(refs. 6 and 25, see below for more precise statement). The scattering theory
for (1.1) has been studied by using this property and the existence of the
wave operators defined by the limits

W±= lim
tQ ±.

U(t, 0)−1 e−itH0, H0=−D, (1.2)

their completeness, viz. Ran W±=Hac(U0), the absolutely continuous sub-
space of H for U0, and the absence of the singular continuous spectrum of
U0 have been established when V is of short range type. (6, 25, 29) It follows
that the solutions U(t, 0) u0 of (1.1) can be written as a superposition:

u(t, x)=C aje−itljfj(t, x)+uscat(t, x), (1.3)

where fj(t, x) are 2p-periodic in t and are eigenfunctions of the Floquet
Hamiltonian K with eigenvalues 0 [ lj < 1, and uscat(t, x) satisfies

||uscat(t, x)−e−itH0k(x)|| Q 0 (1.4)

for some k ¥H as t Q.. Similar results are known also for (1.1) with long
range potentials, (11) for three particle systems, (12, 20) and for particles in time
periodic perturbation of constant electric field. (1)

Note that the unperturbed Floquet Hamiltonian K0=−i“t −D is uni-
tarily equivalent to the direct sum Á.

n=−. (−D+n) on the direct sum
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Á.

n=−. H of infinite copies of H and the spectrum of K0 is absolutely
continuous which fills up the whole real line. It can be shown (25) that the
pertubation V is relatively compact with respect to K0 and, hence, all
eigenvalues of K are embedded in the continuum. This suggests that
eigenvalues of K are unstable under perturbations. Indeed, the resonance
theory for time periodic systems has been developed in the frame work of
extended phase space and Floquet Hamiltonian, and it has been shown for
potentials V(t, x) which are dilation analytic with respect to x, that all
bound states of (1.1), viz. eigenvalues of K, will turn into resonances when
small perturbations which satisfy the Fermi–Golden rule are switched on,
and that the imaginary part of the resonance corresponds to the life time of
the unperturbed bound state. (26) Since the Fermi–Golden rule is satisfied by
generic potentials, bound states of K are generically unstable. This latter
problem has recently been further developed via time dependent methods
and the instability of bound states and the exponential decay of the survi-
val probability of bound states in intermediate time have been established
for general potentials which do not necessarily satisfy the assumption of
dilation analyticity. (10, 16, 23) It is also shown that the behavior of eigenvalues
of K are actually more complex and the eigenvalues which disappear under
small perturbation can reappear outside the regime of perturbation. (4) It is
also possible to construct a explicit class of time periodic potentials for
which the Floquet Hamiltonians K do have finite number of eigenvalues (17)

in the interval (0, 1].
In spite of these interesting works, however, a lot of problems remains

open for (1.1). Among others we study in this paper the local decay prop-
erty of the solutions. If V is t-independent and decays sufficiently rapidly in
x, it has long been known (see, e.g., refs. 7, 19) that for initial data u0(x),
which decays sufficiently rapidly at infinity, the solution u(t)=U(t, 0) u0 of
(1.1) admits as t Q. an asymptotic expansion

u(t, x)=C
finite

aje−itljfj(x)+t−
1
2B0u0(x)+t−

3
2B1u0(x)+· · · (1.5)

which is valid locally in space. Here fj are eigenfunctions of H=−D+V
with eigenvalues lj, and B0 — 0 if 0 is neither an eigenvalue nor a resonance
of H, and B0 may be nonzero otherwise (see Remark 6.6 of ref. 7). The Bj,
j=0, 1,... are finite rank operators. We show in this paper that, in spite of
the possibly complex behavior in intermediate time intervals, the solution
of (1.1) settles down as t Q. to the asymptotic form

u(t, x)=C
finite

aje−itljfj(t, x)+t−
1
2B0u0(t, x)+t−

3
2B1u0(t, x)+· · · , (1.6)
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as in the autonomous case, where fj(t, x) and 0 [ lj < 1 are now as in
(1.2), B0 — 0, if 0 is neither an eigenvalue nor a resonance of K in the sense
to be defined below, and B0 may be nonzero otherwise (see Remark 1.9).
Here Bj are finite rank operators from the space of functions of x to those
of (t, x), 2p-periodic in t.

We assume that V(t, x) satisfies the following assumption. We write
T=R/2pZ for the unit circle and OxP=(1+x2)1/2.

Assumption 1.1. The function V(t, x) is real-valued and is
2p-periodic with respect to t: V(t, x)=V(t+2p, x). For b > 2 we assume
that

||V||b — C
2

j=0
sup
x ¥ R3

OxPb 1F 2p

0
|“ jtV(t, x)|2 dt2

1
2

<.. (1.7)

We denote by Vb the set of all real-valued functions V on T×R3 which
satisfy (1.7). Vb is a Banach space with the norm ||V||b.

Under Assumption 1.1 the operators H(t) u=−Du+V(t, x) u are self-
adjoint in the Hilbert space H=L2(R3) with the common domain H2(R3),
the Sobolev space of order 2, and the Eq. (1.1) generates a unique pro-
pagator {U(t, s) :−. < t, s <.} on H, which satisfies the following
properties (see, e.g., ref. 27):

1. U(t, s) is unitary in H, and (t, s) W U(t, s) is strongly continuous.
2. U(t, r)=U(t, s) U(s, r), and U(t, t) is the identity operator.
3. U(t+2p, s+2p)=U(t, s) for t, s ¥ R.
4. U(t, s) H2(R3)=H2(R3). For u0 ¥ H2(R3), U(t, s) u0 is an

H-valued C1-function of (t, s), and it satisfies the equations

i “tu(t, s) u0=H(t) U(t, s) u0, i “sU(t, s) u0=−U(t, s) H(s) u0.

In particular, the solution to (1.1) with the initial condition u(s)−U0 in H
is given by u(t)=U(t, s) u0.

To formulate the results we introduce some terminology. The weighted
L2 spaces are defined by

Hs — L2
s (R

3) — {f ¥ L2
loc(R

3) : ||OxP s f||L2 <.}.

We use the extended phase space approach initiated by Howland (5) and
implemented for time-periodic systems by the third author. (25, 26) We define
the one parameter family of operators {U(s): s ¥ R} on K by

[U(s) u](t)=U(t, t−s) u(t−s), u=u(t, · ) ¥K. (1.8)
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The properties of U(t, s) stated above imply that {U(s)} is a strongly con-
tinuous unitary group on K. We denote its infinitesimal generator by K:

U(s)=e−isK, s ¥ R.

K is self-adjoint in K and is given by

K=−i“t −D+V(t, x),

D(K)={u ¥K : (−i“t −D+V(t, x)) u ¥K},

where derivatives are in the sense of distributions. We call K the Floquet
Hamiltonian for (1.1). The following properties are well known. (25, 26) Recall
U0=U(2p, 0) is the Floquet operator.

1. e−2piK and I éU0 are unitarily equivalent.

2. Eigenfunctions of K are H-valued continuous. A f(t, x) ¥K is an
eigenfunction of K with eigenvalue l, if and only if f(0, x) is an eigenfunc-
tion of U0 with eigenvalue e−2pil, and

U(t, 0) f(0, x)=e−itlf(t, x).

3. If En is the unitary operator defined by Enu(t, x)=e intu(t, x), then

Eg
nKEn=K+n, for all n ¥ Z. (1.9)

In particular, the spectrum of K is invariant under translations by n ¥ Z.

We denote by K0 the corresponding operator for the free Schrödinger
equation: K0=−i“t −D, D(K0)={u ¥K : (−i“t −D) u ¥K}=D(K). For
Banach spaces X and Y, we let B(X, Y) denote the Banach space of
bounded operators from X to Y. We write B(X)=B(X, X). For s and
d ¥ R, we denote the Hd-valued Sobolev space of order s over T by

K s
d=H s(T, Hd), and Y s

d=B(K s
d, K

s
−d).

If s=0 or d=0, we omit the corresponding label. We first improve the
results on the properties of eigenfunctions of K. For a ¥ R we use the
notation (a)+ to denote any number strictly larger than a, and (a)− any
number strictly smaller than a. The non-negative (positive) integers are
denoted by N0 (N).

Theorem 1.2. Let V ¥Vb with b > 2. Then the eigenvalues of K are
discrete in R and are of finite multiplicities. Eigenvalues of U0 are finite in
number and are of finite multiplicities. If f(t, x) is an eigenfunction of K
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with eigenvalue l, then H(t)a “bt f ¥K for 0 [ a+b [ 2, a, b ¥ N0. More-
over:

(1) If l ¨ Z, then OxPN H(t)a “bt f ¥K for any N and 0 [ a+b [ 2,
a, b ¥ N0.

(2) If l=n ¥ Z, then OxP (12)−H(t)a “bt f ¥K for 0 [ a+b [ 2. If we
assume b > 5/2, then there exist constants c1, c2, c3, such that

k(t, x)−e int C
3

j=1

cjxj

OxP3 ¥K(32)−
.

Remark 1.3. The condition b > 2 is in general necessary for the
point spectral subspace of U0 to be finite dimensional. If V is t-independent
and V(x) [ −C |x|−2 for a large C > 0, it is well known that H=−D+V
has an infinite number of eigenvalues and the point spectral subspace of
U(2p, 0)=e−2piH is infinite dimensional.

Remark 1.4. As stated previously, eigenvalues of K and, hence,
those of U0 are unstable under perturbation and it is commonly believed
that the eigenvalues are absent for almost all time-periodic potentials
V(t, x), which are genuinely t-dependent, however, explicit classes of time-
periodic potentials are known, for which U0 has a finite number of eigen-
values (cf. refs. 4 and 17). It is easy to construct finite rank operators V,
such that U0 has any finite number of eigenvalues. It is an interesting
problem to characterize those potentials, for which U0 has no eigenvalues.
It is known that the eigenfunctions corresponding to non-integral eigen-
values actually decrease exponentially as |x| Q., see refs. 18 and 28. The
proof below shows that the eigenfunctions f satisfy H(t)a “bt f ¥K for
0 [ a+b [ m if supOxPb ||“ jtV( · , x)||L2(T) <. for 0 [ j [ m.

Remark 1.5. Let K have a simple eigenvalue l0 with eigenfunction
k(t, x). Suppose that V(t, x) is perturbed by eW(t, x) which satisfies the
Fermi–Golden rule: (d/dl)(EK(l) QWk, QWk)|l0 > 0 where EK(l) is the
spectral resolution for K and Q is the projection in K to the subspace
orthogonal to k. Then, it is known that, for small e, K with V+eW in place
of V has no eigenvalue near l0 and the solution ue(t) of the corresponding
equation with initial condition ue(0)=k(0) satisfies (ue(t, x), f)=e−itC+
O(e) for some C with Im C > 0 uniformly in t as eQ 0 (cf. refs. 10, 16,
and 23). It is an interesting question to ask how the survival time − 1

2 Im C

behaves, when e is not small (see ref. 4 and the references therein). These,
however, are not the issues addressed in this paper.

236 Galtbayar et al.



Definition 1.6. (1) n ¥ Z is said to be a threshold resonance of K,
if there exists a solution u(t, x) of

−i “tu−Du+V(t, x) u=nu(t, x) (1.10)

such that, with a constant C ] 0,

u(t, x)=
Ce int

|x|
+u1(t, x), u1 ¥K. (1.11)

Such a solution is called an n-resonant solution.

(2) We say that V(t, x) is of generic type, if 0 is neither an eigenvalue
nor a threshold resonance of K. Otherwise, it is said to be of exceptional
type.

Remark 1.7. (1) Because of the identity (1.9), n ¥ Z (l+n ¥ R) is a
threshold resonance (or an eigenvalue) of K, if and only if 0 (respectively l)
is a threshold resonance (respectively an eigenvalue) of K.

(2) The resolvent R0(z)=(K0 −z)−1, considered as a Yd-valued func-
tion of z ¥ C ± (the upper or lower complex half plane), d=b/2, has con-
tinuous boundary values R ±

0 (l)=lime a 0 R0(l±ie), and V is of generic
type, if and only if 1+R ±

0 (n) V is invertible in B(K−d) for some (hence for
all) n ¥ Z (see Section 2). Since R ±

0 (n) V is compact in K−d and depends
continuously on V ¥Vb, it follows that the set of generic potentials V is
open and dense in Vb.

(3) We do not know any explicit, genuinely time-dependent, and
multiplicative example of V(t, x), which is of exceptional type. For time-
independent V examples are easily constructed: If V [ 0, lV is of excep-
tional type if 1 ¥ s(l |V|

1
2 (−D)−1 |V|

1
2), and such l always exists, if V ] 0

(cf. ref. 7). Here and hereafter s(T) denotes the spectrum of the operator T.

Now we can state the main result of the paper.

Theorem 1.8. Let V ¥Vb for b > bk —max{2k+1, 4}, k ¥ N, and
let {fj} be an orthonormal basis of eigenfunctions of K corresponding to
the eigenvalues 0 [ lj < 1. Set d=b/2 and e0=min{1, b−bk2 }. We have the
following results.
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(1) Suppose V is of generic type. Then there exist finite rank opera-
tors B1,..., Bk from Hd to K1

−d, such that Bj=0, unless j is odd, and such
that, for any u0 ¥Hd and for any e, 0 < e < e0, as t Q.,

U(t, 0) u0=C
j

cje−itljfj(t, x)+t−
3
2B1u0(t, x)+· · ·

+t−
k
2−1Bku0(t, x)+O(t−

k+e
2 −1), (1.12)

where cj=2p(fj(0), u0)H, and O(t−
k+e
2 −1) stands for an H−d-valued func-

tion of t such that its norm in H−d is bounded by C t−
k+e
2 −1 ||u0 ||Hd , when

t \ 1.

(2) Suppose V is of exceptional type, b > bk, k \ 2, and {f01,..., f0m}
… {fj} is an orthonormal basis of eigenfunctions of K with eigenvalue 0.
Then, there exist a 0-resonant solution k(t, x), finite rank operators
B1,..., Bk−2 from Hd to K1

−d, such that Bj=0, unless j is odd, and such
that, for any u0 ¥Hd and for any 0 < e < e0 as t Q.,

U(t, 0) u0=C
j

cje−itljfj(t, x)+t−
1
2 1d0k(t, x)+C

m

a=1
daf0a(t, x)2

+t−
3
2B1u0(t, x)+· · ·+t−

k−2
2 −1Bk−2u0(t, x)+O(t−

k−2+e
2 −1), (1.13)

where cj and O(t−
k−2+e

2 −1) are as in (1), d0=2p(u0, k(0))H, and da are linear
functionals of u0 of the form

da(u0)=aa1(u0, f01(0))H+·· ·+aan(u0, f0m(0))H, a=1,..., m.

In particular, all da vanish on the orthogonal complement of the
1-eigenspace of the Floquet operator U0=U(2p, 0).

Remark 1.9. (1) In the statement of Theorem 1.8 (2) the terms
involving the resonant function, or the eigenfunctions, are to be omitted, in
case n is not a threshold resonance, or not an eigenvalue. As in the auto-
nomous case (see Remark 6.6 of ref. 7), we expect the linear functionals
{da} in (1.13) may be linearly independent or dependent on the
1-eigenspace of U0 dependening on V, however, we do not know any
explicit example here (see (3) of Remark 1.6).

(2) The 2p appears in the definition of cj because of the normaliza-
tion of eigenfunctions: {`2p fj(0, x)} is the orthonormal basis of eigen-
functions of U0, if {fj(t, x)} is the one for K.
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(3) We shall explain how the operators Bj in (1.12) (resp. (1.13)) and
Fj(0) in (1.17) (resp. (1.21)) below are related at the end of Introduction.
In particular, B1 in (1.12) is a rank one operator.

(4) The expansion of the form (1.5) for autonomous systems is
known also for more general equations, including higher order Schrödinger
type equations (cf. ref. 19 and references therein). For the hyperbolic equa-
tions, the asymptotic behavior of the local energy can be described by
resonance poles, (15) and such results have been extended to the time-perio-
dic systems (refs. 3 and 24). However, to the best knowledge of the authors,
an expansion formula like (1.6) has not been known for Schrödinger equa-
tions with time-periodic potentials. In particular, the threshold resonances
are defined and their role in the large time behavior of the solution is made
clear for the first time in this paper.

The rest of the paper is devoted to the proof of Theorem 1.7. We
display the plan of the paper, explaining the main idea of the proof, when
non-integral eigenvalues are absent, as the latter contribute to (1.12) or
(1.13) only by eigenfunctions and by the remainder terms, and as they can
be easily accommodated by a similar (but simpler) method for treating the
threshold eigenvalues or threshold resonances. We write J: HQK for the
identification operator (Ju0)(t, x)=u0(x). We shall prove the theorem by
studying the unitary group e−isK via the Fourier transform:

e−isKJu0(t)=lim
e a 0

1
2pi

F e−islR(l+ie) Ju0 dl, (1.14)

R(z)=(K−z)−1 being the resolvent of K. This requires a detailed study of
R(z) near the reals. In Section 2 we begin with the study of R0(z)=
(K0 −z)−1 and show that

1. R0(z) has a Ck-extension to C̄ ± 0Z as a Y s
c-valued function,

s ¥ N0, if k \ 0 and c > k+1
2.

2. R0(z+n) has an asymptotic expansion in powers of `z as z Q 0.
We denote the boundary values on the reals by R ±

0 (l)=R0(l±i0).
3. l ¨ Z is an eigenvalue of K, if and only if −1 ¥ s(R ±

0 (l) V), and
n ¥ Z is an eigenvalue or resonance of K if and only if −1 ¥ s(R ±

0 (n) V).

We then prove most of Theorem 1.1 in that section. We also show in Sec-
tion 2 how the n-mode of R(z) Ju0, viz. the nth Fourier component of
R(z) Ju0 with respect to t, decays as n Q ±..

In Section 3 we study the behavior of R(z) near and on the real line.
The properties 1. to 3. above and Theorem 1.2 imply that R(z) has
boundary values R ±(l)=R(l±i0) away from Z 2 {eigenvalues of K}, and
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they are Ck functions with values in Y1
d. In Section 3.1 we study R(z) near

Z for generic V. In this case G(z)=(1+R0(z) V)−1 exists for z near Z, and
we obtain the following theorem by a straightforward perturbation argu-
ment. We write L (j)(z) for the jth derivative of L(z), and f é g stands for
the integral operator on T×R with the kernel f(t, x) g(s, y).

Definition 1.10. Let X and Y be Banach spaces, and let L(z) a
B(X, Y)-valued function defined in U={z ¥ C+ : 0 < |z| < r}, a punched
neighborhood of the origin in C+. Let k ¥ N0 and 0 [ e < 1. We say
L(z)=O(z

k+e
2 ), if L(z) satisfies the following properties:

(i) L(z) ¥ Ck(U) and it satisfies

||(d/dz) j L(z)|| [ Cj |z|
k+e
2 −j, j=0, 1,..., k, z ¥ U. (1.15)

(Hence, L(z) is C[k/2](U 2 {0}), if we set L(0)=0.)

(ii) For a=[(k+2)/2], there exist m > 0 and c > 0 such that, for
0 < h < c,

F
m

−m
||L (a)(z+h)−L (a)(z)|| dz [ 3C |h|

e

2, if k is even,
C |h|

1+e
2 , if k is odd.

(1.16)

For fixed (r, m, c), we write ||L(z)||O((k+e)/2) for the sum of the smallest
numbers C0,..., Ck and C, such that (1.15) and (1.16) are satisfied.

Theorem 1.11. Let V ¥Vb for b > bk —max{2k+1, 4}, k ¥ N. Let
d=b/2 and e0=min{1, b−bk2 }. Suppose that V is of generic type. Then, as
a Y s

d-valued function of z ¥ C+, s=0, 1, for any 0 < e < e0, we have

R(z+n)=F0(n)+`z F1(n)+zF2(n)+· · ·+zk/2Fk(n)+O(z (k+e)/2) (1.17)

in a neighborhood of z=0. Here

(1) Fj(n)=EnFj(0) Eg
n for all n ¥ Z and j=0, 1,... .

(2) If j is odd, Fj(0) are operators of finite rank and may be written
as a finite sum ; ajn é bjn, where ajn, bjn ¥K1

−d.

(3) The first few terms are given as

F0(n)=G+(n) R+
0 (n)(=R+(n)), (1.18)

F1(n)=G+(n) D1(n) G−(n)g, (1.19)

F2(n)=G+(n)[D2(n)−D1(n) VG+(n) D1(n)] G−(n)g, (1.20)
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where G ±(n)=(1+R ±
0 (n) V)−1 , and where Dj(n) are the operators defined

in statement (3) of Lemma 2.3.

In Section 3.2 we study the same problem in the case that V is of
exceptional type. In this case, −1 ¥ s(R ±

0 (n) V), and the analysis of R(z)
near thresholds is substantially more involved. We apply here the method
developed by Murata (19) and prove the following theorem. We shall repeat
some of the arguments of Murata here for the convenience of the readers.
Note that we also could have used the approach introduced in ref. 9. For
Borel sets I we write EK(I) for the spectral measure of K.

Theorem 1.12. Let Assumption 1.6 be satisfied with b > bk —
2k+1, k \ 2 an integer. Let d=b/2, and 0 < e < e0=min{1, b−bk2 }.
Suppose that V is of exceptional type. Then, as a Y s

d-valued function of
z ¥ C+, s=0, 1,

R(z+n)=−
1
z
F−2(n)+

1

`z
F−1(n)+F0(n)+· · ·

+z (k−2)/2Fk−2(n)+O(z (k−2+e)/2) (1.21)

in a neighborhood of z=0. Here

(1) Fj(n)=EnFj(0) Eg
n for n ¥ Z and j=−2, −1,... .

(2) Fj(n) is of finite rank, when j is odd, and may be written as a
finite sum ; ajn é bjn, where ajn, bjn ¥K1

−d.

(3) F−2(n)=EK({n}).

(4) F−1(n)=EK({n}) VD3(n) VEK({n})−4piQ̄n,where Q̄n=O · , k(n)P k(n),
and k(n) is a suitably normalized n-resonant function.

Remark 1.13. In the statement of Theorem 1.12 the terms involving
the resonant function, or the eigenfunctions, are to be omitted, in case n is
not a threshold resonance, or not an eigenvalue.

In Section 4, we apply (1.17) or (1.21) to the expression (1.14) for
e−isKJ. Using also the properties that || ddl R

+
0 (l) VR+

0 (l) Ju0 ||K1
−d

=O(|l|−3/2)
and ||R+

0 (l) VR+
0 (l) VR+

0 (l) u0 ||K1
−d

=O(|l|−3/2) as |l| Q. (see Lemma 2.5),
which, in physics terminology, represents the fact that the energy spreads
slowly in the resolvent, and which guarantees that the contributions to the
integral of thresholds singularities at n ¥ Z are summable, we then obtain
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the asymptotic expansion of e−isKJ as sQ.. When V is of generic type,
the result is

e−isKJ=s−3/2Z1(s)+· · ·+s−(k+2)/2Zk(s)+O(s−(k+2+e)/2) (1.22)

as a B(Hd, K
1
−d)-valued function. Here Zj(s) is 2p-periodic in s, Zj(s)=0

if j is even, and if j is odd, Zj(s) has the form Zj(s)=Cj ; n e−insFj(n) J
where Cj is the universal constant in (4.3). Because F(n)=EnFj(0) Eg

n and
Fj(0)=; n ajn é bjn, ajn, bjn ¥K1

−d, by Theorem 1.11 (2), the Fourier inver-
sion formula implies

Zj(s) u0(t, x)=Cj C
n

C
n

e−in(s−t)ajn(t, x) F
T×R3

bjn(s, y) e−insu0(y) ds dy

=2pCj C
n

ajn(t, x) F
R3

bjn(t−s, y) u0(y) dy. (1.23)

Since K1
−d is continuously embedded in C(T, H−d) by the Sobolev embed-

ding theorem, (1.22) implies that, uniformly with respect to t ¥ T (hence
with respect to t ¥ R by the periodicity), as sQ.,

||U(t, t−s) u0 −s−3/2Z1(s) u0(t)− · · · −s−(k+2)/2Zk(s) u0(t)||H−d

=O(s−(k+2+e)/2) ||u0 ||Hd . (1.24)

We set t=s in (1.24) and replace s by t. We then obtain (1.12) with

Bj(t)=2pCj C
n

ajn(t, x) é bn(0, y). (1.25)

Though the procedure will be a little more involved, as will be shown in
Section 4, to settle the convergence problem at various stages, this basically
proves Theorem 1.8 for generic V. The proof of Theorem 1.8 for the
exceptional case can be carried out along the same lines, by applying (1.21)
instead of (1.17).

In what follows the adjoints of various bounded operators between
function spaces over T×R3 are taken with respect to the coupling

Of, gP=F
T×R3

f(t, x) g(t, x) dt dx.

2. LIMITING ABSORPTION PRINCIPLE

In this and next sections we study the resolvent R(z), z ¥ C ±. In this
section, we begin with studying R0(z) near the boundary of C ± and, then,
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identify those points l ¥ R, where the boundary values R ±(l) —
lime a 0 R(l±ie) do not exist, with the eigenvalues, or the threshold reso-
nances, of K. We note that the limiting absorption principle (away from
thresholds) has been proved previously in greater generality, see for
example refs. 14 and 29, and the references therein.

We denote by r0(z)=(−D−z)−1 the resolvent of the free Schrödinger
operator −D in L2(R3), by pn, n ¥ Z, the projection in L2(T) onto the one
dimensional subspace spanned by e int, and by Pn=pn é I the correspond-
ing operator in K=L2(T) éH. For c ¥ R, we write Xc=B(Hc, H−c). For
the function`z, we always choose the branch such that Im`z \ 0.

2.1. The Free Resolvent

We write cl(C) for the closure of C0[0,.) in the Riemann surface of
`z. The following is well known (cf. refs. 2, 7, 8, and 13).

Lemma 2.1. Consider r0(z) as an Xc-valued analytic function
C0[0,.) ¦ z Q r0(z), where c > k+1/2, k=0, 1,... . Then

(1) r0(z) has an extension to cl(C)0{0} as an Xc-valued
Cc−(1/2)+-function.

(2) When c > 1, it can be extended to cl(C) as an Xc-valued contin-
uous function. We write r ±

0 (l)=lime a 0 r0(l±ie), l ¥ [0,.).

(3) r0(z): Hc QH−c is compact for any z ¥ cl(C).

(4) For j=0,..., k, there exist constants Cj such that

||(d/dz) j r0(z)||Xc [ CjOzP−(j+1)/2, |z| \ 1. (2.1)

The following is a special case of Lemmas 2.2 and 2.5 of ref. 19 where
more general operators are studied. We provide an elementary proof for
the convenience of readers. We use the notation O(z

k+e
2 ) of Definition 1.10

for functions defined in C ± 0{0}. This slight abuse of notation should not
cause any confusion. We let bk=max{2k+1, 4} as above.

Lemma 2.2. Let c > bk/2 for a k ¥ N. Then:

(1) As an Xc-valued function on {z ¥ C ± : 0 < |z| < 1}, r0(z) satisfies

r0(z)=g0+`z g1+·· ·+zk/2gk+dk(z), dk(z)=O(z
k+e
2 ), (2.2)
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for any 0 [ e < e0 —min{1, c− bk
2 }. Here gj are the integral operators

gju(x)=
i

4pj!
F (i |x−y|) j−1 u(y) dy, j=0, 1,..., k, (2.3)

and gj are of finite rank, when j is odd.

(2) Suppose k \ 2. Let Hc° be the closed subspace of Hc given by
Hc°={u ¥Hc : > u dx=0}. Then, gj ¥ B(Hc°, H−c+1) for j=0,..., k, and
r0(z) satisfies (2.2) as a B(Hc°, H−c+1) valued function.

Proof. (1) The integral kernel of r0(z) admits an expansion

e i`z |x−y|

4p |x−y|
=C

k

j=0

1
4pj!

(i`z) j |x−y| j−1+dk(z; x, y)

with the remainder given by

dk(z; x, y)=
(i`z)k |x−y|k−1

4p(k−1)!
F
1

0
(1−s)k−1 (e is`z |x−y|−1) ds. (2.4)

If j is odd, |x−y| j−1 is a sum of monomials xayb, |a|+|b|=j−1, and gj is
of finite rank. We show that the integral operator dk(z) with the kernel
dk(z; x, y) satisfies dk(z)=O(z

k+e
2 ) as an Xc-valued function. Using

“

“z
(e is`z |x−y|−1)=

s
2z
“

“s
(e is`z |x−y|−1)

and applying integrating by parts, we have

1 d
dz
2 j 3`z k F

1

0
(1−s)k−1 (e is`z |x−y|−1) ds4

=˛z
k
2−j F

1

0
pjk(s)(e is`z |x−y|−1) ds, j < k,

z−k
2 3ck(e i`z |x−y|−1)+F

1

0
pkk(s)(e is`z |x−y|−1) ds4 , j=k,

(2.5)

where pjk, j=0,..., k, are polynomials in s, and ck are constants. Using the
obvious estimate |e i`z |x−y|−1| [ Ce |z|

e

2 |x−y| e, we then obtain

: 1 d
dz
2 j dk(z; x, y) : [ Cjk |x−y|k−1+e |z|

k+e
2 −j, j=0, 1,..., k,
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for any 0 [ e [ 1 and |z| [ 1. Thus dk(z) satisfies (1.15) as an Xc-valued
function. We next prove (1.16) for dk(z). If k is even, a=(k+2)/2 and

d (a)
k (z, x, y)=

|x−y|k−1

z
3c(e i`z |x−y|−1)+F

1

0
p(s)(e is`z |x−y|−1) ds4 ,

by virtue of (2.5), where the constant c vanishes unless k=2, and p(s) is a
polynomial. Since |ea−eb| [ Ce |a−b| e for any 0 [ e [ 1 if Re a, Re b \ 0,
we have, uniformly with respect to 0 [ s [ 1, that

: 1
z+h

(e is`z+h |x−y|−1)−
1
z
(e is`z |x−y|−1):

[ : h
z(z+h)

(e is`z |x−y|−1):+: 1
z+h

(e is`z+h |x−y|−e is`z |x−y|):

[ 1 h |x−y| e

|z1− e2(z+h)|
+

h e |x−y| e

|(z+h)(`z+h+`z) e|
2 — |x−y| e a e1(z, h),

and, by interchanging the roles of z and z+h, that

: 1
z+h

(e is`z+h |x−y|−1)−
1
z
(e is`z |x−y|−1):

[ 1 h |x−y| e

|z(z+h)1−
e

2|
+

h e |x−y| e

|z(`z+h+`z) e|
2 — |x−y| e a e2(z, h).

It follows that for 0 < e < e0

||d (a)
k (z+h)−d (a)

k (z)||Xc [ ˛
Ca e1(z, h), |z+h| \ h/2,
Ca e2(z, h), |z+h| < h/2.

(2.6)

The change of variable z Q zh instantly implies that

F
|z+h| \ h/2

a e1(z, h) dz+F
|z+h| < h/2

a e2(z, h) dz=Ceh
e

2.

Thus, dk(z) satisfies (1.16) as an Xc-valued function when k is even. When k
is odd, d (a)

k (z) has the integral kernel

|x−y|k−1

`z
F
1

0
p(s)(e is`z |x−y|−1) ds,
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and we proceed entirely similarly as above. We omit the details (see the
proof of Lemma 2.4 for a similar argument).

For proving (2), we first note that gj ¥ B(Hc°, H−c+1), j=0,..., k. This
follows from the expression for u ¥Hc°

gju(x)=cj F (|x−y| j−1−|x| j−1) u(y) dy

and the obvious inequality ||x−y| j−1−|x| j−1| [ CjOxP j−2 OyP j−1, which
imply |gju(x)| [ COxP j−2 ||u||Hc and, hence, ||gju||H− c+1

[ C ||u||Hc . For
completing the proof of (2), it then suffices to show that r0(z), considered
as a B(Hc°, H−c+1)-valued function, has an expansion in powers of `z up
to the order zk/2 with the remainder O(z

k+e
2 ). We choose q ¥ C.0 (R3) such

that q(t)=1 near t=0 and q(t)=0 if |t| \ 1, and decompose

r0(z)=r0(z) q(D)+r0(z)(1−q(D)).

Then, as the Fourier transform is an isomorphism between L2
c(R

3) and the
Sobolev space Hc(R3) and the multiplication with (t2−z)−1 (1−q(t)) is a
B(Hc(R3))-valued smooth function of z near z=0, r0(z)(1−q(D)) is a
B(L2

c(R
3)) valued smooth function of z near z=0 and has a Taylor

expansion up to any order. For u ¥Hc° we have û(0)=0. Choose q̃ such
that qq̃=q and define ûj(t) by

ûj(t)=q̃(t) F
1

0

“(qû)
“tj

(ht) dh=
q̃(t)
|t|

F
|t|

0

“(qû)
“tj

(ht̂) dh.

We have q(t)û(t)=;3
j=1 tj ûj(t), or q(D) u=;3

j=1 Djuj(x), and, by using
Hardy’s inequality and the interpolation theorem, we also have

||uj ||L.+||uj ||Hc−1
[ C ||u||Hc .

Then, by integration by parts, we may write r0(z) q(D) u in the form

r0(z) q(D) u(x)=C
3

j=1
i F

e i`z |x−y|(xj −yj)

4p |x−y|3
uj(y) dy

+C
3

j=1
`z F

e i`z |x−y|(xj −yj)

4p |x−y|2
uj(y) dy, (2.7)

and statement (2) follows by an argument similar to the one used for
proving (1). L
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The Fourier series expansion with respect to the t-variable implies

R0(z)= C
m ¥ Z

À (pm é r0(z−m)) (2.8)

on the tensor product K=L2(T) é L2(R3), where we inserted À to
emphasize that the summands are orthogonal to each other. Since −i“/“t
commutes with R0(z), it may be considered as a Y s

c-valued function for any
s ¥ N and c \ 0. Recall that K s

c=H s(T, Hc), and Y s
c=B(K s

c, K
s
−c).

Combining Lemma 2.2 with (2.8), we obtain the following lemma.

Lemma 2.3. Let c > 1/2 and s ¥ N0. Consider R0(z) as a Y s
c-valued

analytic function of z ¥ C ±. Then:

(1) R0(z) can be extended to C̄ ± 0Z as a Cc−(1/2)+ function and, if
c > 1, to C̄ ± as a continuous function. We write R ±

0 (l)=lime a 0 R0(l±ie)
for the boundary values on the reals l ¥ R.

(2) For c > 1 and any z ¥ C̄ ±, R0(z) is a compact operator from K s
c

to K s
−c.

(3) Let c > bk/2 —max{k+1
2 , 2} for an integer k \ 1, a=[(k+2)/2]

and e0=min{1, c− bk
2 }. Then, for any n ¥ Z, in a neighborhood of 0 in C̄+,

R0(z+n)=R+
0 (n)+`z D1(n)+· · ·+zk/2Dk(n)+R̃0k(n, z). (2.9)

Here

(a) Dj(n): K
s
c QK s

−c are compact operators, and are defined by

Dj(n)=˛pn é gj+
1

(j/2)!
C
m ] n

pm é
d j/2r+0
dz j/2 (n−m), if j is even,

pn é gj, if j is odd.

(2.10)

In particular, Dj(n) is of finite rank, if j is odd.

(b) R̃0k(n, z)=O(z
k+e
2 ) for any 0 [ e < e0, and it has the form

R̃0k(n, z)= C
m ¥ Z

pm é ek(z, n−m), (2.11)

where ek(z, 0)=dk(z) and e (j)
k (z, m)=(d/dz)j ek(z, m), m ] 0, satisfies

||e (j)
k (z, m)||Xc [ C |z|a−j OmP−(a+1)/2, |z| < 1/2 (2.12)
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for r=0,..., k, and

F
1/2

−1/2
||e (a)

k (z+h, m)−e (a)
k (z, m)||Xc dz

[ COmP−(a+1)/2 ˛ |h|, k \ 3,
|h| e, k=2,
|h|

1+e
2 , k=1.

(2.13)

Proof. Since −i“/“t commutes with R0(z), we have only to prove
the case s=0. We have ||;.

n=0 À An ||Yc=sup−. < n <. ||An ||Yc . Hence the
statement (1) follows from (2.8) and the properties in parts 1, 2, and 4 of
Lemma 2.1. The statement (2) follows from (2.8) and the properties in
parts 3 and 4 of Lemma 2.1 (cf. ref. 25). Note that R0(z+n)=EnR0(z) Eg

n

by virtue of (1.9), EnPmEg
n=Pn+m, and the fact that En is unitary in K±d.

Hence it suffices to prove (3) for n=0. We expand each summand of (2.8)
near z=0. For the term with m=0, we apply (2.2). We expand those with
m ] 0 as

r0(z−m)= C
0 [ j [ k/2

z j

j!
d jr+0
dz j (−m)+ek(z, m). (2.14)

Estimate (2.12) and (2.13) follow from Lemma 2.1. (We assumed c > 2 to
obtain (2.13) when k=a=1.) This implies the remainder estimate
R0k(n, z)=O(z

k+e
2 ) for any 0 < e < e0. The compactness of Dj(0) is obvious,

as each term is a norm limits in Yc of difference quotients of R(z) as z Q 0
in Yc. This completes the proof of the Lemma. L

We remark here that that the adjoint of R0(z): Kc QK−c is given by
R0(z)g=R0(z̄) and it is bounded from K s

c to K s
−c for any s ¥ N.

In what follows we often use the following lemma.

Lemma 2.4. Let X, Y, Z be Banach spaces, Suppose that
L1(z)=O(z

k+e
2 ) and L2(z)=O(z

k+e
2 ) for k ¥ N0 and 0 [ e < 1 as B(X, Y) and

B(Y, Z) valued functions, respectively.

(1) If k \ 1, then z−1/2L1(z)=O(z
k+e−1

2 ) and

||z−1/2L1(z)||O((k−1+e)/2) [ C ||L1(z)||O((k+e)/2). (2.15)

(2) L2(z) L1(z)=O(z
k+e
2 ) as a B(X, Z)-valued function and

||L2(z) L1(z)||O((k+e)/2) [ C ||L1(z)||O((k+e)/2) ||L2(z)||O((k+e)/2). (2.16)
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(3) If L3(z) and L4(z) are B(Y, Z) and B(Z, Y)-valued smooth func-
tions of `z, respectively, then, L3(z) L1(z)=O(z

k+e
2 ) and L1(z) L4(z)=

O(z
k+e
2 ) as B(X, Z) and B(Z, X)-valued functions, respectively.

||L3(z) L1(z)||O((k+e)/2) [ C ||L3(z)||Ck+1 ||L1(z)||O((k+e)/2), (2.17)

||L1(z) L4(z)||O((k+e)/2) [ C ||L4(z)||Ck+1 ||L1(z)||O((k+e)/2), (2.18)

where we wrote ||u||Ck+1=supz2 ¥ U ;k+1
j=0 ||(d/dz) j (u(z2))||.

(4) If X=Y, then, (1+L1(z))−1 exists in a suitable neighborhood of
0 and (1+L1(z))−1=1+O(z

k+e
2 ).

Proof. (1) It suffices to show that z−1/2L1(z) satisfies (1.16) and
(1.15) with k−1 in place of k. We show (1.16) only as the other is obvious.
We write a=[(k+2)/2] and ag=[(k+1)/2]. Since L (j)(0)=0, 0 [

j [ a−1, Taylor’s formula implies

L (j)(z)=
za−j

(a−j−1)!
F
1

0
(1−h)a−j−1 L (a)(hz) dh, j=0,..., a−1. (2.19)

If k is odd, a=ag=(k+1)/2, and Leibniz formula together with (2.19)
imply

1 d
dz
2a

g

1L(z)

`z
2=L (a)(z)

`z
+C

a
g

j=0

cj
`z

F
1

0
(1−h)a−j−1 L (a)(hz) dh

with a suitable constant cj. We write

L (a)(z+h)

`z+h
−

L (a)(z)

`z
=

hL (a)(z+h)

(`z+h+`z)`z`z+h
+

L (a)(z+h)−L (a)(z)

`z
.

Since L (a)(z)=L(ag)(z) satisfies (1.15), we have

F
m

−m

> hL (a)(z+h)

(`z+h+`z)`z`z+h
> dz [ C |h|

e

2,

and

F
|z| [ h

> L (a)(z+h)−L (a)(z)

`z
> dz [ F

|z| [ h

|z+h|
e−1
2 +|z|

e−1
2

|`z |
dz=C |h|

e

2.

As L (a)(z)=L(ag)(z) also satisfies (1.16), we have

F
h < |z| < m

> L (a)(z+h)−L (a)(z)

`z
> dz [ C |h|−

1
2 · |h|

1+e
2 [ C |h|

e

2,
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and, combining the last three estimates, we obtain

F
|z| [ m

> L (a)(z+h)

`z+h
−

L (a)(z)

`z
> dz [ Ch

e

2. (2.20)

Applying (2.20) to L (a)(hz) yields

F
|z| [ m

> L (a)(h(z+h))

`z+h
−

L (a)(hz)

`z
> dz [ Ch

e−1
2 h

e

2.

It follows that Mj(z)=
cj

`z
>10 (1−h)a−j−1 L (a)(hz) dh, j=0,..., a−1, satisfy

F
|z| [ m

||Mj(z+h)−Mj(z)|| dz [ Cjh
e

2 F
1

0
(1−h)a−j−1 h

e−1
2 dh [ Cjh

e

2. (2.21)

(2.20) and (2.21) show that z−1/2L(z) satisfies (1.16) with k−1 in place of k
and z−1/2L(z)=O(z

k−1+e
2 ) when k is odd.

If k is even, ag=a−1=k/2. We write

1 d
dz
2a

g

1L(z)

`z
2=L (a−1)(z)

`z
+C

a
g

j=0

cj
`z

F
1

0
(1−h)a−j−1 L (a−1)(hz) dh

and proceed as above: We use ||L (a−1)(z+h)|| [ C |z+h|
e

2 and obtain

F
m

−m

> hL(a−1)(z+h)

(`z+h+`z)`z`z+h
> dz [ C |h|

1+e
2 ;

using (1.15), we estimate as

||L (a−1)(z+h)−L (a−1)(z)|| [ h F
1

0
||L (a)(z+hh)|| dh [ F

h

0

dh

|z+h|1−
e

2

,

from which we obtain

F
|z| [ m

> L (a−1)(z+h)−L (a−1)(z)

`z
> dz

[ C F
|z| [ m

1F h

0

dh

|z+h|1−
e

2`z
2 dz

[ F
h

0

1F
R

dz

|z+h|1−
e

2`z
2 dh=C F

h

0
h
e−1
2 dh=Ch

1+e
2 .
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It follows that

F
|z| [ m

> L (a−1)(z+h)

`z+h
−

L (a−1)(z)

`z
> dz [ Ch

1+e
2 . (2.22)

Then, the same argument as in the case k is odd implies z−1/2L1(z)
=O(z

k−1+e
2 ) also for even k. Similar and simpler proofs for other statements

are left for the readers. L

We need the following lemma in the final part of the paper. Recall
that J is the identification operator (Ju)(t, x)=u(x). We write

Zc=0
n ¥ Z

{z ¥ C : |z−n| < c}

for the c-neighborhood of Z in C. We define M(z)=R0(z) VR0(z) and
N(z)=R0(z) VR0(z) VR0(z) in the following lemma.

Lemma 2.5. Suppose V ¥Vb for b > bk —max{2k+1, 4}, k \ 1
being an integer. Let d=b/2 and e0=min{1, d− bk

2 }. Then:

(1) For any c > 0 small, s=0, 1 and j=0, 1,..., k, there exists C > 0
such that, for all z ¨ Zc,

||(d/dz) j M(z) Ju0 ||Ks
−d
[ COzP−min{ j2+1, 32} ||u0 ||Hd , (2.23)

||(d/dz) j N(z) Ju0 ||Ks
−d
[ COzP−min{ j2+

3
2,

3
2} ||u0 ||Hd . (2.24)

(2) As B(K s
d, K

s
−d)-valued functions of z defined in a neighborhood

of 0 in C̄ ± and for s=0, 1, we have the expansions

M(z+n)=M0(n)+· · ·+zk/2Mk(n)+M̃k(n, z), (2.25)

N(z+n)=N0(n)+· · ·+zk/2Nk(n)+Ñk(n, z). (2.26)

Here M̃k(n, z)=O(z
k+e
2 ) and Ñk(n, z)=O(z

k+e
2 ) for any 0 < e < e0 and,

Mj(n) and Nj(n), j=0,..., k, satisfy the following estimates for s=0, 1:

||Mj(n) Ju0 ||Ks
−d
[ CjOnP−min{1+j

2,
3
2} ||u0 ||Hd , (2.27)

||Nj(n) Ju0 ||Ks
−d
[ CjOnP−min{32+

j
2,

3
2} ||u0 ||Hd . (2.28)

Moreover, as B(Hd, K
s
−d)-valued functions of z, s=0, 1,

||M̃k(n, z) J||O((k+e)/2) [ COnP−min{1+k
2,

3
2}, (2.29)

||Ñk(n, z) J||O((k+e)/2) [ COnP−min{k2+
3
2,

3
2}. (2.30)
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Proof. We decompose V into its Fourier series with respect to t and
write

V(t, x)= C
.

m=−.
Vm(x) e imt, Vm(x)=

1
2p

F
T

e−imtV(t, x) dt. (2.31)

We have that supx ¥ R3OxPb (;m |Vm(x)|2 OmP4)1/2 <. by the Parseval
formula and Assumption 1.1, a fortiori,

sup
x ¥ R3

OxPb |Vm(x)| [ COmP−2. (2.32)

Write R (a)
0 (z)=(d/dz)a R0(z) etc. When u0 ¥Hd, we may write

R (a)
0 (z) VR(b)

0 (z) Ju0=C
m

e imt é r (a)0 (z−m) Vmr (b)0 (z) u0, (2.33)

for z ¥ C̄+0Zc. It follows that for such z and a+b=j

||R (a)
0 (z) VR(b)

0 (z) Ju0 ||
2
K−d

=2p C
m

||r (a)0 (z−m) Vmr (b)0 (z) u0 ||
2
H−d

[ C C
m

Oz−mP−a−1 OmP−4 OzP−b−1 ||u0 ||
2
Hd

[ COzP−min{j+2, 5} ||u0 ||
2
Hd

and

||R (a)
0 (z) VR(b)

0 (z) Ju0 ||
2
K

1
−d

=2p C
m

||mr(a)0 (z−m) Vmr (b)0 (z) u0 ||
2
H−d

[ C C
m

Oz−mP−a−1 OmP−2 OzP−b−1 ||u0 ||
2
Hd

[ COzP−min{j+2, 3} ||u0 ||
2
Hd

.

The last two estimates imply (2.23). We omit the very similar proof for
(2.24). By virtue of (2.9) and (2.11), we have (2.25) and (2.26) with

Mj(n)= C
a+b=j

Da(n) VDb(n),

Nj(n)= C
a+b+c=j

Da(n) VDb(n) VDc(n),

M̃k(z, n)= C
a+b \ k+1

`za+b Da(n) VDb(n),

Ñk(z, n)= C
a+b+c \ k+1

`za+b+c Da(n) VDb(n) VDc(n),
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where we wrote R+
0 (n)=D0(n) and R̃0(n, k, z)=`zk+1 Dk+1(n), with a

slight abuse of notation. We also use the shorthand notation a+b \ k+1
and a+b+c \ k+1 for the sum over the relevant terms involving the
remainders. We prove (2.27) and (2.29) for large n. If b is odd, then
Da(n) VDb(n) Ju0=0 and, if b=2bŒ is even and a is odd

Da(n) VDb(n) Ju0=(1/bŒ!) e int(gaVnr
(bŒ)
0 (n+i0) u0)(x),

and we obviously have

||Da(n) VDb(n) Ju0 ||Ks
−d
[ COnP−5−2s

2 − bŒ
2 ||u||Hd . (2.34)

When n ] 0 and a=2aŒ, b=2bŒ both are even, we have

Da(n) VDb(n) Ju0=e intgaVnr
(bŒ)
0 (n+i0) u0

+ C
m ] n

e imtr (aŒ)0 (n−m+i0) Vmr (bŒ)0 (n+i0) u0,

and we can estimate as follows for s=0, 1:

||Da(n) VDb(n) Ju0 ||
2
K

s
−d

=2pOnP2s ||gaVnr
(bŒ)
0 (n+i0) u0 ||

2
H−d

+2p C
m ] n

OmP2s ||r (aŒ)0 (n−m+i0) Vmr (bŒ)0 (n+i0) u0 ||
2
H−d

[ COnP2s−5 ||u0 ||Hd+C C
m ] n

OmP2s−4 On−mP−1−aŒ OnP−1−bŒ ||u0 ||Hd

[ COnP−min{3, 2+aŒ+bŒ} ||u0 ||Hd . (2.35)

The estimates (2.34) and (2.35) yield (2.27). For proving (2.29), we use the
expression (2.11) for the remainder instead of (2.10) and proceed similarly,
applying (2.12), remainder estimates in (2.2) and (2.13), and Lemma 2.4 in
addition. We omit the details of the entirely similar proof of (2.28) and
(2.30). L

2.2. Eigenvalues and Resonances

In this section we assume that V ¥Vb with b > 2, and set d=b/2 > 1.
Then R0(z) V is compact in K−d for all z ¥ C̄ ± by Lemma 2.3. Hence
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−1 ¨ s(R0(z) V) for any z ¥ C ± by the self-adjointness of K, and from the
resolvent equation R(z)=R0(z)−R0(z) VR(z) we have

R(z)=(1+R0(z) V)−1 R0(z), z ¥ C ±.

It follows that if −1 ¨ s(R ±
0 (l) V), then R(z) can be extended to C ± 2 I as

a Yd-valued continuous function, where I is a (small) neighborhood of l on
the real line. We denote the boundary values by R ±(l). We then have

R ±(l)=(1+R ±
0 (l) V)−1 R ±

0 (l), l ¥ I. (2.36)

We want to identify those l ¥ R with −1 ¥ s(R ±
0 (l) V) in K−d. We use the

following lemma, see ref. 2, p. 157.

Lemma 2.6. (1) Let c > 0 and s ¥ R. Then there exists C > 0, such
that

> f(t)
t2+l2
>
Hs(R3)

[ Cl−2 ||f||Hs(R3), l > c. (2.37)

(2) Let c > 0 and s > 1/2. Then there exists C > 0, such that for all
l > c and f ¥ H s(R3) satisfying f(t)||t|=l=0, we have

> f(t)
t2−l2
>
Hs−1(R3)

[ Cl−1 ||f||Hs(R3). (2.38)

Proof. Consider first part (1). If s ¥ N0, then (2.37) is obvious. For
general s > 0 we use the interpolation theorem, and for negative s the
duality.

In order to prove (2) we take f ¥ C.0 (R3) such that f(t)=1 for
|t| < c/4 and f(t)=0 for |t| \ c/2, and set f̃=1−f. We have as in (1)

> f(t) f(t)
t2−l2
>
Hs(R3)

[ Cl−2 ||f||Hs(R3), l > c. (2.39)

Take a partition of unity ; qj(t)=1 on t ¥ R30{0} where qj ¥
C.(R30{0}) is homogeneous of degree zero and is supported in a cone
with opening angle less than p/4, and decompose as

f̃(t) f(t)
t2−l2

=
k(t)
|t|+l

C
j

f̃(t) qj(t) f(t)
|t|−l

,
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where k is such that f̃k=f̃ and supp k … {t : |t| > c/8}. Then

|“at(k(t)(|t|+l)
−1)| [ Cal−1,

and (2.38) follows, if we prove

> qj(t) f̃(t) f(t)
|t|−l
>
Hs−1(R3)

[ C ||f||Hs(R3), l > c. (2.40)

In order to prove (2.40), we may assume by rotating the coordinates that qj
is supported by the set {t=(t1, tŒ) : |tŒ| < t1}. We may then choose coor-
dinates (|t|, tŒ) and reduce the estimate (2.40) to

> f(t)
t1 −l
>
Hs−1(R3)

[ C ||f||Hs(R3),

for functions f such that f|t1=l=0, which is obvious by the Fourier
transform. L

The following lemma partly improves the mapping properties of g0

stated in Lemma 2.2.

Lemma 2.7. (1) Let d > 1/2. Then there exists C > 0 such that for
all f ¥ Hd(R3) we have

> f(t)
|t|2
>
Hmin{d−2, (−1/2)− }

[ C ||f||Hd(R3).

(2) Let d > 3/2. Then there exists C > 0 such that for any f ¥ Hd(R3)
with f(0)=0 we have

> f(t)
|t|2
>
Hmin{d−2, (1/2)− }

[ C ||f||Hd(R3).

Here (a)− stands for any number strictly small than a, and the constants C
above depend on this number and d.

Proof. (1) We may assume 1/2 < d < 3/2. We have Hd(R3) …
Lp

loc(R
3) for some p > 3 and f(t)/|t|2 is integrable. Then, using the

Fourier transform, we see that it suffices to show that the kernel
OxPd−2 |x−y|−1 OyP−d defines a bounded operator on L2(R3). This kernel is
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dominated by the kernel |x|d−2 |x−y|−1 |y|−d, which defines a bounded
operator on L2(R3) by well-known results on homogeneous kernels, see for
example ref. 21, and the first part follows.

(2) We may assume 3/2 < d < 5/2. We use the condition f(0)=0 to
replace |x−y|−1 by |x−y|−(1+|x|)−1 in the kernel. We have

|OxPd−2 (|x−y|−1−(1+|x|)−1)OyP−d| [ C |x|d−3 |x−y|−1 |y|−d+1,

and the boundedness follows from the results on homogeneous kernels.
This concludes the proof. L

Lemma 2.8. Let V satisfy Assumption 1.6for some b > 2, and let
d=b/2. Assume that K−d ¦ k

± ] 0 satisfies (1+R ±
0 (l) V) k ±=0. Then:

(1) If l ¨ Z, then l is an eigenvalue of K and k ± is an associated
eigenfunction. For any N and a, b ¥ N0 with 0 [ a+b [ 2 we have
OxPN H(t)a “btk

± ¥K. In particular, k ± is an H2(R3)-valued C1 function.
Let 0 < c < 1. Then, for all l,k ± with dist(l, Z) > c we have

||OxPN H(t)a “btk
± ||K [ C ||k ± ||K, 0 [ a+b [ 2. (2.41)

(2) Assume b > 3 and l ¥ Z. Then the following results hold.

(a) If OV, k ±PK=0, then l is an eigenvalue of K, and k ± is an
associated eigenfunction. We have OxP (1/2)−H(t)a “btk

± ¥K for 0 [

a+b [ 2. (This result actually holds under the assumption b > 2.)
Furthermore, we have, with C ±

j =OxjV, k ±PK/(8p2),

k ±(t, x)−e ilt C
3

j=1

C ±
j xj

|x|3
¥K(32)−

. (2.42)

(b) If OV, k ±PK ] 0, then l is a threshold resonance, and k ± asso-
ciated resonant functions. We have with C ±=OV, k ±PK/(8p2) ] 0,

k ±(t, x)=e ilt
C ±

|x|
+u ±

1 (t, x), u ±
1 ¥K2

(12)−
. (2.43)

(3) {l:−1 ¥ s(R ±
0 (l) V)} is discrete in R0Z, with possible accu-

mulation to Z.

Proof. Due to the periodicity we may assume 0 [ l < 1. We consider
only the +-case, and write k instead of k+. If (1+R+

0 (l) V) k=0, we
have, in the sense of distributions,

(K0 −l)(1+R+
0 (l) V) k=(K0+V−l) k=0.
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We denote the Fourier coefficient of f(t, x) with respect to t by fn(x) as
previously (see (2.31)) such that f(t, x)=;.

n=−. e intfn(x). We have from
(2.8) that

km+r+0 (l−m)(Vk)m=0, m ¥ Z. (2.44)

To prove part (1), we fix c, 0 < c < 1/2, and consider l with c [ l [ 1−c.
We prove that for any N we have

||OxPN
“
j
tk||K [ C ||k||K, j=0,..., 2, (2.45)

with C independent of l in the interval considered. The result (2.41) will
then follow from this result since the differentiation of

“tk(t)=−i(H(t)+l) k(t)

implies “2tk(t)=−i(H(t)+l) “tk(t)−i(“tV) k=−(H(t)+l)2 k(t)−i(“tV) k
and “tV(t, x) is a bounded function. In particular, k ¥D(K), and k is an
eigenfunction of K with eigenvalue l. To show (2.45) we apply Lemma 2.6
and the well-known bootstrap argument (see ref. 2). We have Vk ¥Kd and
(Vk)m ¥Hd=L2

d(R
3). It follows from (2.44) and (2.37) that for l−m < 0

we have km ¥Hd and

||km ||Hd [ COmP−1 ||(Vk)m ||Hd (2.46)

with a constant C > 0 independent of m > l. To study the case m < l, we
note that

OVk, kP=−OVk, R+
0 (l) VkP=−C

m
O(Vk)m, r+0 (l−m)(Vk)mP (2.47)

is a real number, as V is real-valued. Since d > 1, the L2-trace on the sphere
{t: |t|=`l−m} of the Fourier transform (Vk)^m exists, and, as a limit of
the Poisson integral, we have for l−m > 0 that

ImO(Vk)m, r+0 (l−m)(Vk)mP

=
p

2`l−m
F
|t|=`l−m

|(Vk)^m (t)|2 ds(t) \ 0,

where ds(t) is the surface measure on {t: |t|=`l−m}. It follows that the
trace vanishes:

(Vk)^m (t)||t|=`l−m=0, (2.48)
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and, by virtue of (2.38), we obtain that, with a constant independent of m,

||km ||Hd−1
[ ||r+0 (l−m)(Vk)m ||Hd−1

[ COmP−1/2 ||(Vk)m ||Hd . (2.49)

It follows by combining (2.46) with (2.49) that

||k||2K1/2
d−1

=C
m

OmP ||km ||2Hd−1
[ C ||Vk||2Kd [ C ||k||2K−d

.

Notice this constant C does not depend on l, as long as c [ l [ 1−c. This
result implies that Vk ¥K1/2

3d−1 because Assumption 1.7 implies that V
maps K s

c into K s
c+b for any 0 [ s [ 2, and the same argument as above

yields that k ¥K1
2(2d−1)−d with a corresponding estimate

||k||K1
2(2d−1)−d

[ C ||k||K−d

with a l-independent constant, c [ l [ 1−c. We repeat the argument j \ 4
times until N [ j(2d−1)−d for a given N and j/2 \ 2, to obtain (2.45).

To prove part (2) it suffices to consider l=0. Note that

O(Vk)0, r
+
0 (0)(Vk)0P=F

|(Vk)^0 (t)|2

|t|2
dt \ 0.

Thus the argument leading to (2.48) produces

(Vk)^m (t)||t|=`−m=0, 0 > m ¥ Z. (2.50)

It follows that (2.49) holds for m < 0 and, as above,

C
m ] 0

e imtkm=− C
m ] 0

e imtr+0 (−m)(Vk)m ¥K1/2
d−1. (2.51)

We have (Vk)0 ¥Hd(R3). Suppose first that 1 < d < 3/2 or 2 < b < 3. Then
it follows from (2.44) with l=0 and m=0, and from Lemma 2.7(1) that
k̂0=−(Vk)^0/|t|2 ¥ Hd−2(R3) Thus, together with (2.51), we have that
k ¥K1/2

d−2, and hence that Vk ¥K1/2
3d−2. After a few repetition of the

same argument, we conclude that k ¥K2
(−1/2)− and Vk ¥K2

b−(1/2)+ . Thus,
;m ] 0 e imtkm ¥K2

b−(3/2)+ and

k̂0(t)=−lim
e a 0

(Vk)^0 (t)
t2±i0

=
(Vk)^0 (0)
t2

+
(Vk)^0 (t)−(Vk)^0 (0)

t2
(2.52)
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where the first term can be written as

1
4p |x|

F
R3

(Vk)0 (x) dx=
OV, kPK

8p2 |x|
,

and the second term belongs to H(b−2)−(1/2)+ by Lemma 2.7(2).
Suppose now that OV, kPK=0. Then we have that k ¥K2

(b−2)−(1/2)+ ,
and therefore Vk ¥K2

(2b−2)−(1/2)+ . Iteration of the argument implies that
k ¥K2

min{2(b−2)−(1/2)+, (1/2)− }. After a few further iterations we find that
k ¥K2

(1/2)− . To prove the result (2.42), we first note that ;m ] 0 e imtkm(x) ¥
K2
b−(12 )+

and this can be put into the remainder. By Fourier inversion
formula we have from (2.52) that

k0(x)=
1
4p

F k(y) 1 1
|x−y|

−
1
|x|
2 dy

and the function inside the parenthesis can be expanded as (x ·y) |x|−3

+h(x, y), where the remainder satisfies |h(x, y)| [ C |y|2 |x−y−1| |x|−2 for
|x| large. Then the arguments from the proof of Lemma 2.7prove (2.42) if
b > 3. This proves part (2a).

To proceed with the case OV, kPK ] 0 we need to assume that b > 3.
If actually b \ 5, then Lemma 2.7(2) implies that the second term in (2.52)
belongs to H (1/2)−(R3), and we are done. Otherwise, we repeat the
argument as in case (a). We omit the details here.

To prove part (3), assume that we have kj satisfying
kj+R+

0 (lj) Vkj=0 with c [ lj [ 1−c. Since kj are then eigenfunctions
with eigenvalues lj, we may assume that the set {kj} is orthonormalized.
Then (2.41) implies that {kj} is a compact subset of K, which means that
it is a finite set. This argument proves the statement (3). L

Remark 2.9. Let us define

M ±, n
−c ={u ¥K−c : (1+R ±

0 (n) V) u=0},

M2 ±, n
−c ={u ¥K−c : (1+R ±

0 (n) V) u=0, OV, k ±PK=0}.

These spaces do not depend on c for 1/2 < c < b/2. Neither do they
depend on the signs ± , since (1+R + (l) V) k ±=0 due to (2.50). Thus we
may denote them by Mn and M̃n, respectively. We obviously have
dim(Mn/M̃n) [ 1.

We prove the converse of Lemma 2.8.
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Lemma 2.10. Let V satisfy Assumption 1.6 with b > 2. Then we
have the following results.

(1) Suppose that l ¨ Z is an eigenvalue of K with eigenfunction k.
Then k ¥K2

N for any N, and it satisfies (1+R ±
0 (l) V) k=0.

(2) Suppose that l ¥ Z is an eigenvalue of K with eigenfunction k,
and that b > 3. Then k satisfies OV, kPK=0 and (1+R ±

0 (l) V) k=0. It
satisfies the properties in (2a) of Lemma 2.8.

(3) Suppose that l ¥ Z is a threshold resonance of K, k is a corre-
sponding resonant solution, and b > 3. Then k satisfies (1+R ±

0 (l) V) k
=0. It satisfies the properties in (2b) of Lemma 2.8.

Proof. We compare the Fourier coefficients with respect to the t
variable of both sides in K0k+Vk−lk=0. We have (n−D−l) kn+
(Vk)n=0. Hence away from the zeros of t2+n−l we have

k̂n(t)=−
(Vk)^n (t)
t2+n−l

. (2.53)

Suppose first that l ¨ Z and k ¥K. Then Vk ¥Kb. When n > l, it
obviously follows that

kn(x)=−r0(l−n)(Vk)n. (2.54)

Consider now n < l. Since (Vk)^n ¥ Hb(R3), the L2-trace of (Vk)^n on the
sphere t2=l−n is well-defined, and by (2.53) it has to vanish. As in the
proof of the previous lemma we have

k̂n(t)=−
(Vk)^n (t)
t2+n−l

=−lim
e a 0

(Vk)^n (t)
t2+n−l + ie

or

kn=−r ±
0 (l−n)(Vk)n. (2.55)

The results (2.54) and (2.55) imply (1+R ±
0 (l) V) k=0. The first statement

of Lemma 2.8 then implies that k ¥K2
N for any N. This proves part (1) of

the lemma.
To prove part (2), it suffices to consider the case l=0. The argument

in the proof of part (1) shows that kn=−r ±
0 (l−n)(Vk)n for n ] 0. For
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n=0 we have −Dk0+(Vk)0=0. Since t2/(t2±ie) is bounded by 1 in
modulus and converges to 1 as eQ 0, t ] 0, we see that, in L2(R3),

k̂0(t)=lim
e a 0

t2k̂0(t)
t2±ie

=−lim
e a 0

(Vk)^0 (t)
t2±ie

. (2.56)

Here (Vk)^0 (t) is of class C1, since we assume b > 3. Hence for the right
hand side to converge in L2(R3), −(Vk)^0 (0) has to vanish and, by virtue
of (2.56), k0=−r0(0)(Vk)0. Thus we have again (1+R ±

0 (0) V) k=0. The
second statement of Lemma 2.8 then implies that k has the properties
stated in (2a) of that lemma.

To prove part (3), it again suffices to consider l=0. Let k be a
0-resonant solution to Ku=0. Then by (1.11) there exists C ] 0 such that
k−C |x|−1 ¥K. Thus kn ¥ L2(R3) for all n ] 0, and (Vk)^n ¥ Hb−(1/2)+(R3)
for all n. The argument in the proof of part (1) implies that the trace of
(Vk)^n (t) on the sphere t2=l−n vanishes for all n < l. Hence (2.55) holds
for n ] 0. When n=0, we have that k̂0(t)−4p |t|−2 ¥ L2(R3) by assump-
tion. Thus k̂0 ¥ L1

loc(R
3) and (2.56) holds in L1

loc(R
3) or k0=−r0(0)(Vk)0.

Thus we have (1+R ±
0 (0) V) k=0 and statement (2) in Lemma 2.8

completes the proof. L

3. THRESHOLD BEHAVIOR OF R(z)

We denote by L the set of non-integral eigenvalues of K. We will later
show that L 2 Z is a discrete subset of R, and we proceed, assuming this
result. Then the Yd-valued analytic function R(z) of z ¥ C ± has continuous
extensions to C̄ ± 0(L 2 Z), and the equation

R(z)=(1+R0(z) V)−1 R0(z) (3.1)

is satisfied for all z ¥ C̄ ± 0(L 2 Z). For operators A and B, we write A … B
if A is a restriction of B. Notice that the commutator relation

[Dt, R0(z) V] … R0(z)(DtV)

implies that R0(z) V is also compact in K1
−d, and that −1 ¨ s(R0(z) V) in

K1
−d, when z ¨ L 2 Z. Since (3.1) is satisfied as an identity in Y1

d as well,
we obtained the following lemma. We write R ±(l)=R(l±i0), as above.

Lemma 3.1. Let k \ 0 be an integer, and let d > k+1/2. Then for
s=0, 1, the analytic function C ± ¦ z Q R(z) ¥Y s

d can be extended to
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C̄ ± 0(L 2 Z) as a Cd−(1/2)+ function. When z ¥ C̄ ± 0(L 2 Z), R ±(z):
K s
d QK s

−d are compact.

In the following two sections, we let k, b, d, and e0 be as in
Theorem 1.7, viz. we assume b > max{2k+1, 4} for an integer k \ 1 and
set d=b/2 and 0 < e < e0=min{1, d−k−1/2, d−2}. We then study the
behavior of R(z), when z approaches n ¥ Z. We further assume k \ 2 if V is
of exceptional case.

3.1. The Generic Case

In this section we prove Theorem 1.11. We assume that V is of generic
type. Then Lemmas 2.8 and 2.10 imply that −1 ¨ s(R ±

0 (n) V) in
K s

−d, s=0, 1, for any integer n ¥ Z. It follows that R(z) can be extended to
a neighborhood I of Z as a Y s

d valued continuous function, and that (3.1)
holds for all z ¥ C ± 2 I. In what follows we concentrate on the +-case and
n=0, since other cases are either reduced to this case via the identity
R(z+n)=EnR(z) Eg

n or treated entirely analogously.
We omit the variable n=0 and write by using (2.9) in the form

1+R0(z) V=1+R+
0 V+`z D1V+· · ·+z

k
2DkV+L20k(z) — L(z)+L20k(z),

where L20k(z)=R̃0k(0, z) V=O(z
k+e
2 ) as a B(K s

−d)-valued function in a
neighborhood of 0. Define

G+(0)=(1+R+
0 (0) V)−1

which exists by assumption. Then, for small z,

L(z)−1=G+(0)(1+`z D1VG+(0)+· · ·+z
k
2DkVG+(0))−1 (3.2)

also exists and is a B(K s
−d)-valued analytic function of`z near 0. Thus,

(1+R0(z) V)−1=(1+L(z)−1 L20k(z))−1 L(z)−1

=L(z)−1+{(1+L(z)−1 L20k(z))−1−1} L(z)−1

and, by Lemma 2.4,

L1(z) — {(1+L(z)−1 L20k(z))−1−1} L(z)−1=O(z
k+e
2 )

as a B(K s
−d)-valued function. Thus, expanding L(z)−1 as a power series of

z1/2, we see that (1+R0(z) V)−1 can be written as

(1+R0(z) V)−1=Q0+z
1
2Q1+·· ·+z

k
2Qk+O(z

k+e
2 ) (3.3)
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as a B(K s
−d)-valued function. Inserting the expansion (2.9) for R0(z) and

(3.3) into (3.1) and applying Lemma 2.4, we have, denoting D0=R+
0 ,

R(z)=(Q0+z
1
2Q1+·· ·+z

k
2Qk)

×(D0+`z D1+·· ·+z
k
2Dk)+O(z

k+e
2 )

(3.4)

as a Y s
d valued function. Expanding the product in the right of (3.4) and

putting all the terms with powers higher than zk/2 into the remainder, we
finally obtain

R(z)=F0+`z F1+zF2+·· ·+zk/2Fk+O(z
k+e
2 ), (3.5)

as a Y s
d valued function. From the explicit formula (2.9) and

1−VG+(0) R+
0 (0)=1−VR+(0)=(1+VR+

0 (0))−1=G−(0)g,

we obtain the expressions in statement (3) of Theorem 1.10. Note that Fj

are linear combination of the operators of the form

G+(0) Di1VG+(0) Di2V· · ·G+(0) Dir−1
VG+(0) Dir , i1+·· ·+ir=j (3.6)

and, if j is odd, one of i1,..., ir must be odd. Suppose ia is odd. Then, we
may write the operator in (3.6) in the form ADiaB with

A=G+(0) Di1V· · ·Dia−1
VG+(0), B=VG+(0) Dia+1

V· · ·VG+(0) Dir

and A ¥ B(K1
−d) and B ¥ B(K1

d). Hence Fj is a finite rank operator from
K1
d to K1

−d. Moreover, the adjoint

Bg=Dg
irG

+(0)g V· · ·VDg
ia+1

G+(0)g V ¥ B(K−d)

is bounded in K1
−d because G+(0)g=(1+VR−

0 (0))−1 is bounded in K1
d.

Since Dia is of the form ; Cabxa é yb, it follows that

ADiaB=C Cab(Axa) é (Bgyb)

and Axa, Bgyb ¥K1
−d. This completes the proof of Theorem 1.11.

3.2. The Exceptional Case

In this section we prove Theorem 1.12. Thus, we assume n ¥ Z is a
threshold resonance and/or an eigenvalue and study the behavior of R(z)
as z Q n. As above, it suffices to consider the case n=0 and z ¥ C̄+. The
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following is an adaptation of Murata’s argument (19) to the time periodic
systems. We use (2.9) to write as an identity in B(K−d)

1+R0(z) V=1+R+
0 (0) V+z1/2D1V+zD2V+R2(z) V (3.7)

— S(z)+R2(z) V, (3.8)

where we have simplified the notation by omitting the dependence on n=0
and wrote R̃02(0, z)=R2(z). We have R2(z)=O(z

2+e
2 ) as a Y s

d-valued func-
tion. The operator S(z) is compact in K1

−d, due to Lemma 2.3, and it is a
polynomial in`z.

Lemma 3.2. There exists r > 0, such that S(z) is invertible in
B(K−d) for 0 < |z| < r and S(z)−1 has a Laurent expansion in B(K−d) of the
form

S(z)−1= C
.

j=−2
Sjz j/2, 0 < |z| < r. (3.9)

The operators S−2, S−1 are of finite rank, Sj are all bounded in K1
−d and

(3.9) is an expansion also in B(K1
−d). The adjoint Sg

j is bounded also
in K1

d.

Proof. We first show that S(z) is invertible in K−d for some z.
Suppose the contrary. Then, since S(z)−1 is compact, there exists a
sequence um ¥K−d such that ||um ||K−d

=1 and S(im−1) um=0. We have

1=(1−R(z) V)(1+R0(z) V)=(1−R(z) V)(S(z)+O(z
2+e
2 )), z ¨ R.

We set z=im−1 in this formula, apply it to um and take the norm in both
sides. We have

1 [ Cm−2+e
2 (1+||R(im−1)||Yd ) [ Cm−2+e

2 (1+||R(im−1)||B(K)) [ Cm− e2.

This is a contradiction, and S(z) is invertible for some z ¥ C. Thus the ana-
lytic Fredholm theory implies that S(z)−1 is meromorphic with respect to
`z with poles of finite order. Since z=0 is a pole of S(z)−1 by assumption,
S(z)−1 exists for all 0 < |z| < r for some r > 0, and it has an expansion
S(z)−1=;.

j=−a Sjz j/2 with finite rank operators S−a,..., S−1. We next show
that a \ −2. We have from (3.8) the identity

S(z)−1=(1−R(z) V)(1+R2(z) VS(z)−1). (3.10)
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If a < −2 and Sa ] 0, then for some u ¥K−d with ||u||K−d
=1,

||S(z)−1 u|| \ C|z| a/2, and the right hand side in (3.10) is bounded by

||(1−R(z) V)(1+R2(z) VS(z)−1) u|| [ C(|z|−1+|z| (a+e)/2), |z| < 1,

or C |z|a/2 [ (|z|−1+|z| (a+e)/2), which is a contradiction, since e > 0, and we
assume a < −2. Recall that S(z)−1 is also compact in K1

−d. It follows
;.

j=−2 Sjz j/2 is also the expansion of S(z)−1 in B(K1
−d) and, hence, Sj are

bounded in K1
−d, j=−2, −1,... . Since (S(z̄)−1)g=(S(z̄)g)−1 , we have

C
.

j=−2
Sg

j z
j/2=(S(z̄)−1)g=(1+VR−

0 (0)+z1/2VDg
1+zVD2)−1.

Here VR−
0 (0)+z1/2VDg

1+zVD2 is compact in K1
d and is analytic with

respect to`z. Thus, Sg
j are bounded in K1

d, j=−2, −1,... . L

We now show that all coefficients in (3.9) are explicitly computable,
and we then compute a few leading coefficients. We introduce the notation

L0=1+R+
0 (0) V, L1=D1V, L2=D2V,

so that S(z)=L0+`z L1+zL2, see (3.7) and (3.8). The following lemma
implies that Sj, j \ 1, can be computed from S−j and Lj, j=0, 1, 2.

Lemma 3.3. For 0 < |z| < r, S−1(z) satisfies the identity

S(z)−1=
1
z
S−2+z−1/2S−1+S0

−{1+z1/2(S0L1+S−1L2)+zS0L2}−1

×{z1/2(S0L1S0+S−1L2S0+S0L2S−1)+zS0L2S0}. (3.11)

Proof. Compare coefficients to z j/2 on both sides of the identity
S(z) S(z)−1=S(z)−1 S(z)=I. We obtain, with the convention that Sj=0
for j [ −3, and with the notation dj, k for the Kronecker delta, the follow-
ing identities

L0Sj+L1Sj−1+L2Sj−2=dj, 0I, (3.12)

SjL0+Sj−1L1+Sj−2L2=dj, 0I, (3.13)

for j=−2, −1, 0,...,. Hence we have for j=−2, −1, 0,...,

dj, 0S0+dj+1, 0S−1+dj+2, 0S−2= C
2

k=0
S−k(L0Sj+k+L1Sj+k−1+L2Sj+k−2)

=Sj+(S0L1+S−1L2) Sj−1+S0L2Sj−2. (3.14)
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Multiply both sides by z j/2 and sum up over j \ 1 to obtain

C
.

j=1
z j/2Sj+z1/2(S0L1+S−1L2) C

.

j=0
z j/2Sj+zS0L2 C

.

j=−1
z j/2Sj=0,

or

{1+z1/2(S0L1+S−1L2)+zS0L2} C
.

j=1
z j/2Sj

=−{z1/2(S0L1S0+S−1L2S0+S0L2S−1)+zS0L2S0},

which implies (3.11). L

The next step is to compute Sj, j=−2, −1, 0, explicitly. We write
EK( · ) for the spectral measure of K. We then have the following results.

Lemma 3.4. We have S−2=−EK({0}) V.

Proof. Set z=is in (3.10), multiply both sides by is, and let s a 0.
The left hand side obviously converges to S−2 in B(K−d). The right hand
side converges to −EK({0}) V in the strong topology of B(K−d), as
(is) R(is) Q −EK({0}) strongly in K. L

Lemma 3.5. We have the following results on the operators S−j and
Lj, j=0, 1, 2.

L0S0+L1S−1+L2S−2=I, (3.15)

S0L0+S−1L1+S−2L2=I, (3.16)

S−1L0=S−2L0=S−2L1=S−1L1S0L0=0, (3.17)

L0S−1=L0S−2=L1S−2=L0S0L1S−1=0, (3.18)

S0L2S−2=S−2L0S0=S−1L2S−2=S−2L2S−1=0. (3.19)

Proof. The results (3.12) and (3.13) for j=0 imply (3.15) and (3.16).
Setting j=−2 in (3.12) and (3.13), we get L0S−2=0 and S−2L0=0. Since

L1u(t, x)=D1Vu=
i

8p2
F

T×R3
V(s, y) u(s, y) ds dy, (3.20)

we obtain L1S−2=S−2L1=0 by virtue of Lemmas 2.8 and 2.10. Now set
j=−1 in (3.12) and (3.13), and use L1S−2=S−2L1=0 to conclude that
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L0S−1=S−1L0=0. We then obtain by multiplying (3.12) and (3.13) by S−2

from the left and the right, respectively,

S−2L2Sj=SjL2S−2=0, j ] −2, (3.21)

S−2L2S−2=S−2. (3.22)

Setting j=0 in (3.14), we have (S0L1+S−1L2) S−1+S0L2S−2=0. But
S0L2S−2=0 as is shown above. It follows that

S0L1S−1=−S−1L2S−1. (3.23)

Multiply both side of (3.23) by L0 from the left, and use the fact L0S−1=0.
Thus L0S0L1S−1=0 follows. We have S−1L1S0L0=0 similarly. L

We now introduce the notation

P0=L0S0, P1=L1S−1, P2=L2S−2, (3.24)

Q0=S0L0, Q1=S−1L1, Q2=S−2L2. (3.25)

Lemma 3.5 then implies the following Lemma. We omit the proof, which
follows from the results in Lemma 3.5 and straightforward calculations.

Lemma 3.6. The operators Pj and Qj, j=0, 1, 2 are projections in
B(Kd), which satisfy

PiPj=di, jPj, i, j=0, 1, 2, (3.26)

QiQj=di, jQj, i, j=0, 1, 2, (3.27)

P0+P1+P2=I, (3.28)

Q0+Q1+Q2=I. (3.29)

Lemma 3.7. We have the following results. We write M=M0, see
Remark 2.9.

(1) If 0 is a threshold resonance, then S−1 is an operator of rank one.
It can be written in the form −4piO · , VkP k, where k ¥ M is the resonant
function, which is uniquely determined by the conditions

OV, kP=1, OD2Vf, VkP=0, for all f ¥ kerL2(K).

(2) If 0 is not a threshold resonance, then S−1=0.

Schrödinger Equations with Time-Periodic Potentials 267



(3) For odd j \ 1, Sj is of finite rank. It can be written in the form

(Sju)(t, x)=C
nj

n=1
pjn(t, x) F

T×R3
qjn(s, y) u(s, y) ds dy (3.30)

where nj <. and pjn, qjn ¥K1
−d for k=1,..., nj.

Proof. Set j=0 in (3.13), and multiply both sides by S−1 from the
right. Then (3.18) and (3.19) imply

S−1=S0L0S−1+S−1L1S−1+S−2L2S−1=S−1L1S−1. (3.31)

Thus rank S−1 [ rank L1=1. Note that we have u=S−1L1u+S−2L2u, if
u ¥ M(=kerK−d

L0). Since Ran S−2 … M and Ran S−1 … M, we have

Ran S−1+̇Ran S−2=M

from Lemma 3.6. Here +̇ denotes (nonorthogonal) direct sum. It follows
from Lemmas 2.8 and 3.4 that rank S−1=1, if 0 is a threshold resonance,
and S−1=0 otherwise.

Suppose now that 0 is a threshold resonance. Set Q̄0=S−1R
+
0 (0). Then

S−1L0=0 implies S−1=−Q̄0V, and hence rank S−1=rank Q̄0, and
furthermore Q̄0(1+VR+

0 (0))=0. Write

Q̄0=4pik+ é k− so that S−1=−4pik+ é Vk− .

Then L0S−1=0 implies L0k+=0, and therefore k+ ¥ M. Also Q̄0(1+VR+
0 (0))

=0 implies (1+VR+
0 (0))g k−=(1+R−

0 (0) V) k−=0, and hence k− ¥ M.
Moreover, the identity (3.31) implies

S−1=S−1L1S−1=OV, k+POV, k−P S−1.

Since S−1 ] 0, k± are resonance solutions, and

OV, k+POV, k−P=1. (3.32)

Moreover,

P1P2=L1S−1L2EK({0}) V=0, and Q2Q1=EK({0}) VL2S−1L1=0,

respectively, imply

OL2f, Vk−P=0, ODg
2Vf, Vk+P=0 (3.33)

for all f ¥ EK({0}) K. Since rank P2=rank Q2=dim M−1, the condition
(3.33) determines k± ¥ M ± up to scalar factors. However, as the actions of
L2=D2V and Dg

2V are identical on f, since the trace of (Vf)^n on the
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sphere |t|=`−n vanishes, as was seen in the proof of Lemma 2.8. Thus
we may choose k+=k− , and set OV, kP=1, so that (3.32) is satisfied.

If we write T1=S0L1+S−1L2, T2=S0L2, T̃1=S0L1S0+S−1L2S0+
S0L2S−1, and T̃2=S0L2S0. Then (3.11) implies that Sj, j \ 1 is a linear
combination of

Ti1 · · ·Tim T̃r, i1+·· ·+im+r=j.

Since rank T1 [ 2 and rank T̃1 [ 3, this shows that rank Sj is finite, if j is
odd. Moreover, by using the concrete expression L1u=cOV, uP and
S1u=Ou, VkP k and the facts that Li and Lg

i , i=1, 2 and Si and Sg
i ,

i=−2, −1, 0 are bounded in K1
−d, we see that Sj is of the form (3.30), if j

is odd, as in the last part of Section 3.1. L

We have now determined S−1 and S−2 explicitly, and we want to show
how S0 is determined from (3.12). Write Xj=PjK−d, j=0, 1, 2. Then
Lemma 3.6 implies the direct sum decomposition

K−d=X0+̇X1+̇X2.

As S0P2=S0L2S−2=0 by (3.24) and (3.19), S0 acts on X2 trivially. Recall
(3.23): S0P1=−S−1L2S−1. Thus on X1 we define S0u=−S−1L2S−1v, if
u=P1v. On X0, we define S0 as follows. Multiplying (3.16) by L0 from the
left, we have L0S0L0=L0. Hence X0=Ran L0. Moreover, ker S0 5
Ran L0={0} and L0S0=I on Ran L0=X0, and S0 is the right inverse
of L0.

We now show that R(z) has the expansion as in (1.21). We write

R(z)=S(z)−1 (1+R2(z) VS(z)−1)−1 R0(z). (3.34)

Since ||R2(z) VS(z)−1||B(Ks
−d)

=O(|z| e/2), we may expand the second factor
on the right by Neumann series and obtain

R(z)=C
.

j=0
S(z)−1 (−R2(z) VS(z)−1) j R0(z)

=1 C
N

j=0
+ C

.

j=N+1

2 (−S(z)−1 R2(z) V) j S(z)−1 R0(z). (3.35)

Here, because R2(z) VS(z)−1 is C (k)+ outside z=0 and it satisfies the esti-
mates (d/dz) j R2(z) VS(z)−1=O(z

e

2−j), j=0,..., k, the second sum on the
right will become, if N is taken sufficiently large, a Ck function in a neigh-
borhood of z=0 (including z=0) with vanishing derivatives at z=0 up to
the order [ k. Thus, we may ignore the second sum from our consideration.
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We first show that the summand with j=0, S(z)−1 R0(z), may be
expanded in the powers of `z starting from z−1 up to the order z

k−1
2 as a

Y s
d-valued function, s=0, 1, as follows:

S(z)−1 R0(z)=z−1EK({0})+· · ·+z
k−1
2 Wk−1+O(z

k−1+e
2 ). (3.36)

To see this, we replace S(z)−1 by its expansion (3.9). By virtue of
Lemma 2.4 and (2.9), the part (z−1/2S−1+S0+·· · ) R0(z) has an expansion
of the desired form starting from a term with z−1/2. For the part
z−1S−2R0(z), S−2=−EK({0}) V, we write EK({0})=; fj é fj by using the
orthonormal systemof eigenfunctions.We haveVfj ¥K2

b+(1/2)− and;m OmP
||(Vfj)m ||Hb+(1/2)−

<. by virtue of Theorem 1.1, and, by virtue of
Lemma 2.10 (2), the zero mode of Vfj satisfies > (Vfj)0 (x) dx=> Vfj
dx dt=0. It follows, by applying Lemma 2.2 (2) for the zero mode and
Lemma 2.1 for m ] 0 modes, that

z−1S−2R0(z)=−z−1 C
j
fj é (R0(z)g Vfj)

=−z−1 C
j
fj é 1C

m
e imtr0(z−m)g (Vfj)m 2

can be expanded as in (3.36) with −z−1EK({0}) VR ±
0 (0)=z−1EK({0}) as

the leading term.
The same argument shows that S(z)−1 R2(z) V and z−1R2(z) VEK({0}),

as B(K s
−d)-valued functions, can be expanded in the forms

S(z)−1 R2(z) V=z
1
2W̃1+·· ·+z

k−1
2 W̃k−1+O(z

k−1+e
2 ). (3.37)

z−1R2(z) EK({0})=z
1
2Ỹ1+·· ·+z

k−1
2 Ỹk−1+O(z

k−1+e
2 ). (3.38)

We next show that the summand with j=1, S(z)−1 R2(z) V ·
S(z)−1 R0(z), has an expansion of the following form as a Y s

d-valued func-
tion, s=0, 1:

S(z)−1 R2(z) V ·S(z)−1 R0(z)=z−1
2Y−1+·· ·+z

k−2
2 Yk−2+O(z

k−2+e
2 ). (3.39)

By virtue of (3.36) and (3.37), it suffices to show that z−1S(z)−1 R2(z) V ·
EK({0}) has desired expansion. We again replace S(z)−1 by (3.9). Then, by
virtue of Lemma 2.4 and (3.38), the part z−1(z−1/2S−1+S0+·· · ) R2(z) V ·
EK({0}) has the expansion of the form (3.39) and we have only to examine
z−2S−2R2(z) VEK({0}), which may be written as

z−2EK({0}) V(R0(z)−R+
0 (0)−`z D1(0)−zD2(0)) VEK({0}).

270 Galtbayar et al.



Because eigenfunctions fj satisfy the properties mentioned above,
Lemma 2.1 and Lemma 2.2 imply that the right hand side may be
expanded in the form

z−1/2X−1+·· ·+z
2k−3
2 X2k+1+O(z

2k−3+e
2 ).

The expansion (3.39) follows since 2k−3 \ k−2 when k \ 1.
Lemma 2.4 together with (3.37) and (3.39) implies that for any j \ 2

(S(z)−1 R2(z) V) j S−1(z) R0(z)=z
j−2
2 Y−1, j+·· ·+z

k−2
2 Yk−2, j+O(z

k−2+e
2 ).
(3.40)

Combination of (3.36), (3.39), and (3.40) implies that, as a Y s
d-valued

function, s=0, 1, R(z) has the expansion of the desired form

R(z)=F−2z−1+F−1z−1/2+F0+·· ·+z(k−2)/2Fk−2+O(z (k−2)/2+e). (3.41)

Here, as the computations above show, Fj are linear combinations of

Si0Di1VSi1Di2VSi2 · · ·DimVSimDim+1
, i0+·· ·+im+1=j, (3.42)

and if j is odd, one of ir, 0 [ r [ m+1 is odd. Since Sj and Dj are of finite
rank if j is odd, Fj is also finite rank if j is odd. Moreover, exactly the same
argument used for proving (3.30) shows that Fj has the expression as in
statement (2), when j is odd.

For reference, we compute the first three terms of (3.41) of the expan-
sions in Y j

d, d > 5/2 are given by

F−2=−EK({0}), (3.43)

F−1=EK({0}) VD3VEK({0})−4pi(k é k) (3.44)

F0=S−2D2+S−1D1+[S0 −S−2{D3VS−1+D4VS−2 −(D3VS−2)2}

−S−1D3VS−2] R+
0 (0). (3.45)

Here we have used the fact S−2D1=EK({0}) VD1=0 to eliminate a few
terms, together with the results S−2R

+
0 (0)=EK({0}) VR+

0 (0)=−EK({0})
and S−1R

+
0 (0)=−4pi(k é k). This completes the proof of Theorem 1.12.

Completion of the Proof of Theorem 1.2. The argument above
shows, in particular, that if n is an eigenvalue or threshold resonance of K,
then 1+R0(z) V is invertible, if z is sufficiently close to n in the closed
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upper plane. Since this is true including z=n, if 1+R+
0 (n) V is invertible,

we see in all cases that there are no eigenvalues of K in a neighborhood of
n, except possibly n itself. As the eigenvalues of K are discrete outside Z,
we conclude that they are discrete in R. This completes the proof of
Theorem 1.2.

3.3. R(z) Near Non-Integral Eigenvalues

On the behavior of R(z) at non-integral eigenvalue l, we have the
following lemma. Parameters satisfy d=b/2, b > bk —max{2k+1, 4} for
k ¥ N, s=0, 1 and e0=min{1, b−bk2 } as previously and we assume V ¥Vb.

Lemma 3.8. Let l ¥ R0Z be an eigenvalue of K. Then, as a
Y s
d-valued function of z in a neighborhood of l in C̄ ± 0{0}, R(z+l) has

the following expansion as z Q 0 for any 0 < e < e0:

R(z+l)=
PK({l})

−z
+R̃ ±(l)+zR ±

1 (l)+· · ·+zkR ±
k (l)+O(zk+e), (3.46)

where O(zk+e) is Ck+e and has vanishing derivatives up to the order k at
z=0, and R̃(l)=limzQ l (z−l) R(z) is the so-called reduced resolvent.

Proof. We follow the argument in the proof of Theorem 1.11 and we
shall be sketchy here. We set S̃(z)=1+R ±

0 (l) V+zR ± Œ
0 (l) V where R ± Œ

0 (l)
is the derivative of R ±

0 (l) with respect to l. S̃(z)−1 is a compact operator
in K s

−d, s=0, 1 and the argument as in the proof of Lemma 3.2 shows that
S̃(z)−1 has the Laurent expansion of the following form in B(K s

−d):

S̃(z)−1=z−1S̃−1+S̃0+zS̃1+·· · , S̃−1=PV

where P=EK({l}) is the eigenprojection. We define

R ±
3 (z, l)=R ±

0 (z+l)−R ±
0 (l)−zR ± Œ

0 (l).

Since ||R ±
3 (z, l) VS̃(z)−1||B(Ks

−d)
[ C |z| for small |z|, we may expand

(1+R ±
3 (z, l) VS̃(z)−1)−1 by Neumann series and obtain the following

expression for R(z+l) near z=0, z ¥ C̄± :

(1+R ±
0 (z+l) V)−1 R ±

0 (l+z)

=S̃(z)−1 (1+R ±
3 (z, l) VS̃(z)−1)−1 R ±

0 (l+z)

=1 C
N

j=0
+ C

.

j=N+1

2 (−S̃(z)−1 R ±
3 (z, l) V) j S̃(z)−1 R ±

0 (l+z). (3.47)
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If N is taken sufficiently large, the sum ;.

N+1 ( · · · ) becomes a Y s
d-valued

Ck+e (including z=0) function of z as previously. We have (1+R ±
0 (l) V) P

=P(1+VR ±
0 (l))=0. This and the resolvent equation yield

PV(R ±
0 (l+z)−R ±

0 (l))=−zPR ±
0 (l+z). (3.48)

Recall that eigenfunctions decays rapidly at infinity. Differentiating (3.48)
by z and setting z=0, we have PVR ± Œ

0 (l)=−PR ±
0 (l). It follows that

z−1S̃−1R
±
3 (z, l) V=−P(R ±

0 (z+l)−R ±
0 (l)) V, (3.49)

z−1S̃−1R
±
0 (z+l)=−z−1P−PR ±

0 (z+l). (3.50)

Thus the summand with j=0 in (3.47) has the expansion as in the desired
form (3.46). We next show that all terms in (3.47) with j \ 1 have expan-
sions of the form

Y0+zY1+·· ·+zkYk+O(zk+e) (3.51)

with the same meaning for O(zk+e) as in (3.46). We define T(z)=
S̃(z)−1−z−1S̃−1. Then, T(z) is a B(K s

−d)-valued analytic function and
(3.49) implies that S̃(z)−1 R ±

3 (z, l) V=(z−1S̃−1+T(z)) R ±
3 (z, l) V has the

expansion in the form (3.51) as a B(K s
−d)-valued function (with Y0=0).

Thus, if we show that the summand with j=1 has an expansion of the
form (3.51), we are done. To see that this is indeed the case, we write

S̃(z)−1 R ±
3 (z, l) VS̃(z)−1 R ±

0 (z+l)

=z−2S̃−1R
±
3 (z, l) VS̃−1R

±
0 (z+l)+z−1S̃−1R

±
3 (z, l) VT(z) R ±

0 (z+l)

+z−1T(z) R ±
3 (z, l) VS̃−1R

±
0 (z+l)+T(z) R ±

3 (z, l) VT(z) R ±
0 (z+l).

Then, by virtue of (3.49) and the analyticity of T(z), all terms on the right
except the first may be expanded as in (3.46). We may write the first term
on the right in the following form by using (3.48):

−Pz−1(R ±
0 (z+l)−R ±

0 (l)) VPVR ±
0 (z+l)=PR ±

0 (z+l) PVR ±
0 (z+l)

and this has the desired expansion by virtue of Lemma 2.3. This proved the
Lemma. L

4. PROOF OF THE MAIN THEOREMS

In this section we prove the main Theorem 1.8 for t > 0. The case t < 0
can be treated similarly. We write Y s

d=B(K s
d, K

s
−d) as above, s=0, 1. By
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the spectral theorem e−isK, s > 0, can be written in terms of the upper
boundary value of the resolvent:

e−isKu=lim
e a 0

lim
NQ.

1
2pi

F
N

−N
e−islR(l+ie) u dl, (4.1)

where the right hand side should be understood as a weak integral.
We let u=Ju0, u0 ¥ L2

d(R
3). Via the second resolvent equation, we get

R(z)=R0(z)−M(z)+(1+R0(z) V)−1 N(z).

Here we wrote M(z)=R0(z) VR0(z) and N(z)=R0(z) VR0(z) VR0(z) as in
Lemma 2.5. Insert this for R(l+ie) in the right hand side of (4.1) and write
e−isKJu0 as I0(s) u0+I1(s) u0+I2(s) u0, where

I0(s) u0=lim
e a 0

lim
NQ.

1
2pi

F
N

−N
e−islR0(l+ie) Ju0 dl,

I1(s) u0=−lim
e a 0

lim
NQ.

1
2pi

F
N

−N
e−islM(l+ie) Ju0 dl,

I2(s) u0=lim
e a 0

lim
NQ.

1
2pi

F
N

−N
e−isl(1+R0(l+ie) V)−1 N(l+ie) Ju0 dl.

We study I0(s), I1(s), and I2(s) separately, as they converge for different
reasons. Throughout the proofs always assume at least d=b/2,
b > bk=max{2k+1, 4} and k \ 1, and we assume V ¥Vb.

We use the following two well known results.

Lemma 4.1. Let q ¥ C.0 (R) be even, and assume q(l)=1 near
l=0. Then for n=−1, 0, 1,..., and for all N, we have

hn(s)=
1

2pi
F

R
e−islq(l) ln/2 dl=Cns

−n+2
2 +O(s−N) (4.2)

as sQ., where

Cn=˛
0, for n=0, 2, 4,...,
e−3pi/4n!!

(2i)
n+1
2 `p

for n=−1, 1, 3,... .
(4.3)

Here n!!=n(n−2) · · · 1 for n \ 1 and odd, and (−1)!!=1.

274 Galtbayar et al.



Proof. When n is even, integration by parts implies hn(s)=O(s−N).
When n is odd, we write

hn(s)=
1

2pi
F
.

0
e−islq(l) ln/2 dl+

e ipn/2

2pi
F
.

0
e islq(l) ln/2 dl,

make a change of variable lQ l2, and rewrite in the form

hn(s)=
1

2pi
F

R
(e−isl2+e isl2+ipn/2) q(l2) ln+1 dl.

We first apply integration by parts j=(n+1)/2 times by using

1
±2isl

d
dl

e ±isl2=e ±isl2 (4.4)

to see that

hn (s)=
n!!

2pi(2is) j
F

R
e−isl2q(l2) dl

+
n!!

2pi(−2isl) j
F

Re
e isl2+ipn/2q(l2) dl+O(s−N).

We then use well known results for the Gauss integral to complete the
proof. L

Lemma 4.2. (1) Let X be a Banach space and let f ¥ L1(R, X)
satisfy

F
R

||f(x+h)−f(x)|| dx [ Ch e, 0 < h < 1

for some 0 < e [ 1. Then, ||f̂(l)|| [ Cl−e for l > 1.

(2) Let f=O(z
k+e
2 ) has compact support. Then, ||f̂(l)|| [ Cl−

k+2+e
2 for

l > 1.

Proof. We have for 0 < h < 1

||(e ihl−1) f̂(l)|| [
1
2p
> F

R
e−ilx(f(x+h)−f(x)) dx> [ Che.
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When l > 1, set h=l−1. It follows that ||f̂(l)|| [ Che/sin(1/2). For proving
(2), we first perform integration by parts a=[(k+2)/2] times

f̂(l)=
1

2p(il)a
F

R
e−ilxf (a)(x) dx

and then apply part (1). L

The term I0 (s). As is well known we have

I0(s) Ju0(x)=
1

(2pis)3/2
F e

i(x−y)2

2s u0(y) dy

and we immediately obtain by expanding the exponential into power series

I0(s) Ju0=s−3/2C1Jg1u0+·· ·+s−(k+2)/2ekCkJgku0+E0
k(s) u0, (4.5)

where ej=0, when j is even, and ej=1, when j is odd and

||E0
k(s)||B(Hd,K1

−d)
[ COsP−k+2+e

2 . (4.6)

The term I1(s). For this term we use Lemma 2.5. Choose a partition
of unity of the following form: q ¥ C.0 (R), q even, and

C
.

n=−.
q(l−n)=1, q(l)=˛1 if |l| [ 1/4,

0 if |l| \ 3/4.
(4.7)

Since R+
0 (l) VR+

0 (l) Ju0 and its derivative satisfy estimates (2.23), (2.27),
and (2.29) of Lemma 2.5, d

dl R
+
0 (l) VR+

0 (l) Ju0 is absolutely integrable in
K1

−d and I1(s) u0 can be written in the form

I1(s) u0=
1

2ps
F
.

−.
e−isl d

dl
(R+

0 (l) VR+
0 (l)) Ju0 dl

=
1

2ps
C
.

n=−.
e−ins F

R
e−islq(l)

d
dl

(R+
0 (l+n) VR+

0 (l+n)) Ju0 dl.

(4.8)

We then insert (2.25) for R+
0 (l+n) VR+

0 (l+n) and apply Lemma 4.1. We
obtain

I1(s) u0= C
n ¥ Z

1 C
k

j=1
s−(j+2)/2e−insejCjMj(n) Ju0+E1

k(s, n)2 . (4.9)
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Since Mk
6 (n, z) satisfies (2.29), Lemma 4.2 implies that the remainder

E1
k(s, n)=

1
2ps

e−ins F
R

e−islq(l)
d
dl

M̃k(n, l) dl

satisfies ||E1
k(s, n)||B(Hd,K1

−d)
[ COnP−3

2 OsP−k+2+e
2 , n ¥ Z. Thus, for E1

k(s)=
; n E1

k(s, n), we have

||E1
k(s)||B(Hd,K1

−d)
[ COsP−k+2+e

2 . (4.10)

Note also ;.

n=−. ||Mj(n) Ju0 ||K1
−d
[ C ||u0 ||Hd

by (2.27).
We treat I2(s) separately for the generic case and for the exceptional

case. We need the following lemma.

Lemma 4.3. Suppose that B=;N
j=1 fj é gj ¥Y1

d is of finite rank
and fj, gj ¥K1

−d, j=1,..., n. Let Z(s) u0=;.

n=−. e−insEnBEg
nJu0, u0 ¥Hd.

Then, Z(s) is an integral operator with the kernel 2p;N
j=1 fj(t, x)

gj(t−s, y).

Proof. By the Fourier inversion formula

Z(s) u0=C
n

j=1
fj(t, x) C

.

n=−.
e in(t−s) F

T
e−ins 1F

R3
gj(s, y) u0(y) dy2 ds

=2p C
n

j=1
fj(t, x) F

R3
gj(t−s, y) u0(y) dy (4.11)

and the lemma follows. L

Completion of the Proof, Generic Case. Assume V is generic and
that non-integral eigenvalues are absent for K. We will comment on the
necessary modifications to accommodate non-integral eigenvalues at the
end of the proof. We write R1(z)=(1+R0(z) V)−1 N(z). The integral

I2(s) Ju0=
1

2pi
F e−islR+

1 (l) Ju0 dl (4.12)

is absolutely convergent in K1
−d by virtue of Lemma 2.5, and, using the

partition of unity (4.7), we may write as above

I2(s) Ju0=
1

2pi
C
n ¥ Z

e−isn F e−islq(l) R+
1 (l+n) Ju0 dl. (4.13)
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We then expand R1(z+n) as z Q 0 as in the proof of Theorem 1.10 by
using (2.26) and (3.3). Then, (2.28) and (2.30) implies that R1(z+n) J may
be written as

R1(z+n) J=W0(n)+z1/2W1(n)+· · ·+zk/2Wk(n)+W̃k(z, n),

and, as B(Hd, K
1
−d)-valued functions, we have

||Wj(n)|| [ COnP−3
2, j=0,..., k, ||W̃k(z, n)||O((k+e)/2) [ OnP−3

2. (4.14)

We insert this expansion into (4.13), and apply Lemma 4.1 and Lemma 4.2.
The same argument as for I1(s) u0 implies that

I2(s) J=C
k

j=1
C
n ¥ Z

e−isns−(j+2)/2ejCjWj(n)+E2
k(s), (4.15)

as sQ., where E2
k(s) satisfies the same estimate as in (4.10) and the sum

converges in B(Hd, K
1
−d) by virtue of (4.14). We combine (4.5) and (4.9)

with (4.15). Since Jgju0=Dj(0) Ju0, when j is odd, and Dj(0)+Mj(0)+
Wj(0)=Fj(0) for j=0,..., k, we thus obtain

e−isKJu0=C
k

j=1
s−(j+2)/2 1 C

n ¥ Z
e−isnejFj(n) Ju0 2+O(s−

k+2+e
2 ). (4.16)

Here, for odd j, Fj(0)=; n ajn é bjn with ajn, bjn ¥K1
−d by Theorem 1.10

and Fj(n)=EnFj(0) Eg
n , and, therefore, Lemma 4.3 implies that

Zj(s)= C
n ¥ Z

e−isnEnFj(0) Eg
nJ (4.17)

is the integral operator with kernel 2p; n ajn(t, x) bjn(t−s, y). The Sobolev
embedding theorem implies supt ¥ T ||u(t)||H−d

[ C ||u||K1
−d
. Hence, we deduce

from (4.16) that

sup
t ¥ T

>U(t, t−s) u0 − C
k

j=1
ejs

−(j+2)/2Zj(s) Ju0(t)>
H−d

[ Cs−
k+2+e

2 ||u0 ||Hd

and, setting t=s and replacing s by t,

>U(t, 0) u0 − C
k

j=1
ejt−(j+2)/2Bj(t) u0 >

H−d

[ Ct−
k+2+e

2 ||u0 ||Hd .

Here Bj(t) is the integral operator with kernel 2p; n ajn(t, x) bjn(0, y). This
completes the proof of Theorem 1.8 for generic V if no non-integral eigen-
values exist for K.
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Completion of the Proof, Exceptional Case. For treating I2(s) J0
when V is of exceptional case, we further decompose

R1(z)=(1+R0(z) V)−1 N(z)=N(z)−R(z) VN(z)

and I2(s)=I21(s)+I22(s) accordingly. For studying

I21(s) Ju0=
1

2pi
C
n ¥ Z

e−isn F e−islq(l) N(l+n) Ju0 dl (4.18)

we insert (2.26) for N(z+n), apply Lemma 4.1 and Lemma 4.2 to the
resulting expression, and argue as in the case for I1(s) J0. We obtain

I21(s) u0= C
n ¥ Z

1 C
k

j=1
s−(j+2)/2e−insejCjNj(n) Ju0 2+O(s−

k+2+e
2 ) (4.19)

where O(s−
k+2+e

2 ) satisfies the same estimate as in (4.10). We have

I22(s) Ju0=lim
e a 0

−1
2pi

C
n ¥ Z

e−isnEn F e−islq(l) R(l+ie) VN(l+ie) Eg
nJu0 dl.

(4.20)

If we use (1.21) and (2.26), then, omitting the variable 0, we have

R(z) VN(z)=(−z−1F−2+z−1
2F−1+·· ·+z

k−2
2 Fk−2+O(z

k−2+e
2 ))

×V(N0+·· ·+z
k
2Nk+O(z

k+e
2 )). (4.21)

Since F−2=EK({0}) — P and F−1V=PVD3VPV+S−1, we have

F−2VN0=F−2, F−2VN1=0, F−1VN0=F−1

by virtue of (3.17) and (3.18) and Lemma 2.4 implies the expansion

R(z) VN(z)=−z−1F−2+z−1/2F−1+T0+·· ·+z(k−2)/2Tk−2+O(z
k−2+e

2 ).
(4.22)

Note that we may change the order of lime a 0 and ; n ¥ Z by virtue of (2.28)
and (2.30). Since

lim
e a 0

1
2pi

F e−isl q(l)
l+ie

dl=
1
2p

F
s

−.
q̂(x) dx=1+(s−N),
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the first term of (4.22) contributes to I22(s) Ju0 by

1 C
n ¥ Z

e−isnEnEK({0}) Eg
nJu0 2 (1+O(s−N))

=2p C
j
fj(t, x) é fj(t−s, y)+O(s−N).

The contributions of the other terms in (4.22) may be computed and esti-
mated by using Lemmas 4.1 and 4.2 and the rest of the argument is exactly
same as in the generic case. In particular, the term z−1/2F−1 contributes to
U(t, 0) by the second term

t−
1
2 1d0k(t, x)+C

m

a=1
daf0a(t, x)2+O(t−N)

of (1.13). We omit the repetitive details.

Non-Integral Eigenvalues. We now show how to modify the
argument, when non-integral eigenvalues {l1, l2,..., lN} … (0, 1) are present
for K. We proceed as in the exceptional case. We treat I21 as in the previous
section, however, for I22(s), we use a different partition of unity: We take
qj(l) ¥ C.0 (R), j=0,..., N such that

C
n ¥ Z

C
N

j=0
qj(l+n)=1

and such that qj(l)=1 near l=lj and qj(l)=0 near l=lk, k ] j, where
we defined l0=0. We then further decompose I22=I (0)

22 +·· ·+I(N)
22 where

I (j)
22 (s) J is given by (4.20) with qj(l) in place of q(l). I (0)

22 (s) J can be
treated exactly in the same fashion as above and (I0(s)+I1(s)+I21(s)+
I (0)
22 (s)) J gives the desired formula (1.13) except for the terms coming from

non-integral eigenvalues. To see that I (j)
22 (s) Ju0, j ] 0, contributes only to

the eigenfunctions and to the remainder, we insert (3.46) for R(z) in
R(z) VN(z). Then, with P=EK({lj})

R(z) VN(z) J=
PVN(z) J
lj −z

+(R̃(lj)+· · ·+(z−lj)k Rk(lj)+O((z−lj)k+e)) N(z) J.

Here the second term on the right is B(Hd, K
1
−d)-valued Ck+e on the

support of qj and its norm decays like O(OnP−3/2) with its derivatives when
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translated by n by virtue of (2.28) and (2.30). Thus, its contribution to
I (j)
22 (s) J is O(s−k− e) as a B(Hd, K

1
−d)-valued function and it may be

included in the remainder. If we use the identity (3.50) repeatedly, we see
that

(l−z)−1 PVN(z)=(l−z)−1 P+PR0(z)−PM(z)+PN(z).

Since eigenfunctions fn are two times differentiable with respect to t and
hence ||OxPa P(pn é 1)OxPa|| [ OnP−2 the last three terms contributes to
I (j)
22 (s) J by O(s−k− e) as a B(Hd, K

1
−d)-valued function of s again. The first

term contributes by 2pe−iljs; n fn(t, x) é fn(t−s, y) as previously. The
proof of Theorem 1.8 is completed.
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